【題目】如圖,在四棱柱中,平面ABCD,底面ABCD是矩形,,,,M為的中點(diǎn).
(1)求證:D1M//平面BDC1;
(2)若棱上存在點(diǎn)Q,滿足與平面所成角的正弦值為,求異面直線與BQ所成角的余弦值.
【答案】(1)見解析(2)
【解析】
(1)先證線線平行即,然后根據(jù)線面平行的判定定理可證線面平行;
(2)先利用已知線面角確定點(diǎn)Q的位置,然后找所求的異面直線所成的角,最后在三角形中求解即可.
解:(1)連接交于點(diǎn)H,連接BH,則且,
故四邊形為平行四邊形,
而平面,平面,
故平面.
(2)作于點(diǎn)E,連接,
因?yàn)樗睦庵?/span>中,平面ABCD,底面ABCD是矩形,
所以面,
又面,
所以,
又平面,平面,
所以平面,
,又,
所以,
,
故由可得,
所以,所以Q是的中點(diǎn).
取的中點(diǎn)T,連接,,則,故為異面直線與BQ所成的角.
易知,,平面,所以,,所以,
故異面直線與BQ所成角的余弦值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】盒中有形狀、大小都相同的2個(gè)紅色球和3個(gè)黃色球,從中取出一個(gè)球,觀察顏色后放回并往盒中加入同色球4個(gè),再從盒中取出一個(gè)球,則此時(shí)取出黃色球的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列對任意連續(xù)三項(xiàng),均有,則稱該數(shù)列為“跳躍數(shù)列”.
(1)判斷下列兩個(gè)數(shù)列是否是跳躍數(shù)列:
①等差數(shù)列:;
②等比數(shù)列:;
(2)若數(shù)列滿足對任何正整數(shù),均有.證明:數(shù)列是跳躍數(shù)列的充分必要條件是.
(3)跳躍數(shù)列滿足對任意正整數(shù)均有,求首項(xiàng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:;
(2)討論函數(shù)在R上的零點(diǎn)個(gè)數(shù),并求出相對應(yīng)的a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)). 以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,若直線與曲線交于兩點(diǎn).
(1)若,求;
(2)若點(diǎn)是曲線上不同于的動點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)的直線l:與拋物線E:()交于B,C兩點(diǎn),且A為線段的中點(diǎn).
(1)求拋物線E的方程;
(2)已知直線:與直線l平行,過直線上任意一點(diǎn)P作拋物線E的兩條切線,切點(diǎn)分別為M,N,是否存在這樣的實(shí)數(shù)m,使得直線恒過定點(diǎn)A?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),,.
(1)求證:平面BCD;
(2)求異面直線AB與CD所成角的余弦值;
(3)求點(diǎn)E到平面ACD的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的方程為.在以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,P的極坐標(biāo)為,直線l過點(diǎn)P.
(1)若直線l與OP垂直,求直線l的直角標(biāo)方程:
(2)若直線l與曲線C交于A,B兩點(diǎn),且,求直線l的傾斜角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com