【題目】已知某工廠要設(shè)計一個部件(如圖陰影部分所示),要求從圓形鐵片上進行裁剪,部件由三個全等的矩形和一個等邊三角形構(gòu)成,設(shè)矩形的兩邊長分別為,(單位:cm),且要求 ,部件的面積是.
(1)求y關(guān)于x的函數(shù)表達式,并求定義域;
(2)為了節(jié)省材料,請問x取何值時,所用到的圓形鐵片面積最小,并求出最小值.
【答案】(1),;(2)時,面積最小,.
【解析】
(1)利用已知條件求出,然后求解函數(shù)的定義域即可.
(2)設(shè)圓形鐵片半徑為R,則面積S=πR2,過圓心O作CD的垂線,垂足為E,交AB于點F,連結(jié)OD,求出R的表達式,然后利用基本不等式求解最小值即可.
(1)由題意,利用矩形面積和正三角形的面積公式,
可得,整理得,
又由,解得,即函數(shù)的定義域為,
即,.
(2)設(shè)圓形鐵片半徑為R,則面積S=πR2,
過圓心O作CD的垂線,垂足為E,交AB于點F,連結(jié)OD,則,
所以=,
因為x2>0,由基本不等式,可得,
當且僅當,即時,取等號,
所以圓形鐵片的最小面積為(cm2),
答:當x=2時,所用圓形貼片的面積最小,最小面積為(cm2).
科目:高中數(shù)學 來源: 題型:
【題目】已知圓
(1)求圓關(guān)于直線對稱的圓的標準方程;
(2)過點的直線被圓截得的弦長為8,求直線的方程;
(3)當取何值時,直線與圓相交的弦長最短,并求出最短弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知頂點,,動點分別在軸,軸上移動,延長至點,使得,且.
(1)求動點的軌跡;
(2)過點分別作直線交曲線于兩點,若直線的傾斜角互補,證明:直線的斜率為定值;
(3)過點分別作直線交曲線于兩點,若,直線是否經(jīng)過定點?若是,求出該定點,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體,關(guān)于其結(jié)構(gòu)特征,下列說法不正確的是
A. 該幾何體是由兩個同底的四棱錐組成的幾何體
B. 該幾何體有12條棱、6個頂點
C. 該幾何體有8個面,并且各面均為三角形
D. 該幾何體有9個面,其中一個面是四邊形,其余均為三角形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線,,則下列結(jié)論正確的是( )
A. 把上所有的點向右平移個單位長度,再把所有圖象上各點的橫坐標縮短到原來的倍(縱坐標不變),得到曲線
B. 把上所有點向左平移個單位長度,再把所得圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),得到曲線
C. 把上各點的橫坐標縮短到原來的倍(縱坐標不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線
D. 把上各點的橫坐標伸長到原來的3倍(縱坐標不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個口袋有個白球,個黑球,這些球除顏色外全部相同,現(xiàn)將口袋中的球隨機逐個取出,并依次放入編號為,,,的抽屜內(nèi).
(1)求編號為的抽屜內(nèi)放黑球的概率;
(2)口袋中的球放入抽屜后,隨機取出兩個抽屜中的球,求取出的兩個球是一黑一白的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分15分)已知中心在原點O,焦點在x軸上,離心率為的橢圓過點(,).
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)不過原點O的直線l與該橢圓交于P,Q兩點,滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是連續(xù)的偶函數(shù),且時, 是單調(diào)函數(shù),則滿足的所有之積為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com