【題目】已知曲線 ,則下列說(shuō)法正確的是( )

A. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

B. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

C. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線

D. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線

【答案】B

【解析】對(duì)于,

對(duì)于, ,

對(duì)于, ,

對(duì)于, ,

故選B.

【方法點(diǎn)晴】本題主要考查誘導(dǎo)公式、函數(shù)三角函數(shù)函數(shù)圖象的性質(zhì)及變換,屬于中檔題.函數(shù)圖象的確定除了可以直接描點(diǎn)畫出外,還常常利用基本初等函數(shù)圖象經(jīng)過(guò)“平移變換”“翻折變換”“對(duì)稱變換”“伸縮變換”得到,在變換過(guò)程中一定要注意變換順序.本題是先對(duì)函數(shù)圖象經(jīng)過(guò)放縮變換”再“平移變換”后,根據(jù)誘導(dǎo)公式化簡(jiǎn)得到的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí), 2x
(1)求當(dāng)x<0時(shí),函數(shù)f(x)的表達(dá)式
(2)解不等式f(x)≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1).選修4—1:幾何證明選講

如圖,CD是圓O的切線,切點(diǎn)為D,CA是過(guò)圓心O的割線且交圓O于點(diǎn)B,DADC.求證: CA3CB

(2).選修4—2矩陣與變換

設(shè)二階矩陣A

(Ⅰ)求A1;

(Ⅱ)若曲線C在矩陣A對(duì)應(yīng)的變換作用下得到曲線C6x2y21,求曲線C的方程.

(3).選修4—4坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),圓C的參數(shù)方程為θ為參數(shù)).若直線l與圓C相切,求實(shí)數(shù)a的值.

(4).選修4—5:不等式選講

解不等式:|x2||x1|≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x+1|﹣|x|﹣2
(1)解不等式f(x)≥0
(2)若存在實(shí)數(shù)x,使得f(x)≤|x|+a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.

(1)求{an}的通項(xiàng)公式.

(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問(wèn):b6與數(shù)列{an}的第幾項(xiàng)相等?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C對(duì)邊的邊長(zhǎng)分別是a,b,c.已知c=4,C=
(1)若△ABC的面積等于4 ,求a,b;
(2)若sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是偶函數(shù),且在(0,+∞)內(nèi)是減函數(shù),又f(﹣3)=0,則xf(x)>0的解集是(
A.{x|﹣3<x<0或x>3}
B.{x|x<﹣3或x>3}
C.{x|﹣3<x<0或x<x<3}
D.{x|x<﹣3或0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù)f(x),x∈(0,+∞),f(x)=lgx,則不等式f(x)<0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)得到方程2x+e0.3x﹣100=0(其中e=2.7182…)的大于零的近似解依次為①50;②50.1;③49.5;④50.001,你認(rèn)為的答案為最佳近似解(請(qǐng)?zhí)罴住⒁、丙、丁中的一個(gè))

查看答案和解析>>

同步練習(xí)冊(cè)答案