【題目】已知函數(shù)f(x)=x2﹣(a+2)x+alnx,其中常數(shù)a>0.
(Ⅰ)當(dāng)a>2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)定義在D上的函數(shù)y=h(x)在點P(x0 , h(x0))處的切線方程為l:y=g(x),若 >0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點”.當(dāng)a=4時,試問y=f(x)是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標(biāo);若不存在,請說明理由.
【答案】解:(Ⅰ)函數(shù)f(x)的定義域為(0,+∞),
∵ ,
∴
∵a>2,∴ ,
令f′(x)>0,即 ,
∵x>0,∴0<x<1或 ,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,1),
(Ⅱ)解法一:當(dāng)a=4時,
所以在點P處的切線方程為
若函數(shù) 存在“類對稱點”P(x0 , f(x0)),
則等價于當(dāng)0<x<x0時,f(x)<g(x),
當(dāng)x>x0時,f(x)>g(x)恒成立.
① 當(dāng)0<x<x0時,f(x)<g(x)恒成立,
等價于 恒成立,
即當(dāng)0<x<x0時, 恒成立,
令 ,則φ(x0)=0,…(7分)
要使φ(x0)<0在0<x<x0恒成立,只要φ(x)在(0,x0)單調(diào)遞增即可.
又∵ ,
∴ ,即 .
②當(dāng)x>x0時,f(x)>g(x)恒成立時, .
∴ .
所以y=f(x)存在“類對稱點”,其中一個“類對稱點”的橫坐標(biāo)為 .
(Ⅱ)解法二:
猜想y=f(x)存在“類對稱點”,其中一個“類對稱點”的橫坐標(biāo)為 .
下面加以證明:
當(dāng) 時,
① 當(dāng) 時,f(x)<g(x)恒成立,
等價于 恒成立,
令
∵ ,∴函數(shù)φ(x)在 上單調(diào)遞增,
從而當(dāng) 時, 恒成立,
即當(dāng) 時,f(x)<g(x)恒成立.
②同理當(dāng) 時,f(x)>g(x)恒成立.
綜上知y=f(x)存在“類對稱點”,其中一個“類對稱點”的橫坐標(biāo)為
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),結(jié)合a的范圍求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)法一:a=4時,求出f(x)的導(dǎo)數(shù),得到切線方程根據(jù)新定義問題等價于當(dāng)0<x<x0時,f(x)<g(x),結(jié)合函數(shù)的單調(diào)性求出即可;
法二:猜想y=f(x)存在“類對稱點”,其中一個“類對稱點”的橫坐標(biāo)為 ,然后加以證明即可.
【考點精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的一個焦點與拋物線 的焦點相同,F(xiàn)1 , F2為橢圓的左、右焦點.M為橢圓上任意一點,△MF1F2面積的最大值為4 .
(1)求橢圓C的方程;
(2)設(shè)橢圓C上的任意一點N(x0 , y0),從原點O向圓N:(x﹣x0)2+(y﹣y0)2=3作兩條切線,分別交橢圓于A,B兩點.試探究|OA|2+|OB|2是否為定值,若是,求出其值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點A(0,0),B(4,3),若A,B,C三點按順時針方向排列構(gòu)成等邊三角形ABC,且直線BC與x軸交于點D.
(1)求cos∠CAD的值;
(2)求點C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項均為正整數(shù),其前n項和為Sn , an+1= ,若S3=10,則S180=( )
A.600或900
B.900或560
C.900
D.600
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四面體ABCD中,M是棱AD的中點,O是點A在底面BCD內(nèi)的射影,則異面直線BM與AO所成角的余弦值為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) 的圖象向左平移 個單位,得到函數(shù)g(x)的圖象,則下列關(guān)于g(x)敘述正確的是( )
A.g(x)的最小正周期為2π
B.g(x)在 內(nèi)單調(diào)遞增
C.g(x)的圖象關(guān)于 對稱
D.g(x)的圖象關(guān)于 對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為菱形,且PA=AD=2, ,E、F分別為AD、PC中點.
(1)求點F到平面PAB的距離;
(2)求證:平面PCE⊥平面PBC;
(3)求二面角E﹣PC﹣D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)關(guān)于的一元二次方程,若是從這四個數(shù)中任取的一個數(shù),是從這三個數(shù)中任取的一個數(shù),求上述方程有實數(shù)根的概率.
(2)王小一和王小二約定周天下午在銀川大閱城四樓運動街區(qū)見面,約定5:00—6:00見面,先到的等另一人半小時,沒來就可以先走了,假設(shè)他們在自己估計時間內(nèi)到達(dá)的可能性相等,求他們兩個能相遇的概率有多大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x+sinx,且f(y2﹣2y+3)+f(x2﹣4x+1)≤0,則當(dāng)y≥1時, 的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com