【題目】人口問題是當今世界各國普遍關注的問題.認識人口數(shù)量的變化規(guī)律,可以為有效控制人口增長提供依據(jù).早在1798年,英國經濟學家馬爾薩斯(T.R.Malthus,1766—1834)就提出了自然狀態(tài)下的人口增長模型: 其中x表示經過的時間, 表示x=0時的人口,r表示人口的平均增長率.

下表是1950―1959年我國人口數(shù)據(jù)資料:

如果以各年人口增長率的平均值作為我國這一時期的人口增長率,用馬爾薩斯人口增長模型建立我國這一時期的具體人口增長模型,某同學利用圖形計算器進行了如下探究:

由此可得到我國1950―1959年我國這一時期的具體人口增長模型為____________. (精確到0.001)

【答案】

【解析】由條件知是研究的1950年開始的人口變化,故當x=0時,y=55196..r為平均人口增長率,根據(jù)表格得到r=0.022.故得到 。

故答案為: 。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)
(1)若曲線y=f(x)在點(e,f(e))處的切線與直線x﹣2=0垂直,求f(x)的單調區(qū)間(其中e為自然對數(shù)的底數(shù));
(2)若對任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (a<0). (Ⅰ)當a=﹣3時,求f(x)的單調遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)有且僅有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了普及環(huán)保知識,增強學生的環(huán)保意識,在全校組織了一次有關環(huán)保知識的競賽.經過初賽、復賽,甲、乙兩個代表隊(每隊3人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得10分,答錯得0分.假設甲隊中每人答對的概率均為 ,乙隊中3人答對的概率分別為 , ,且各人回答正確與否相互之間沒有影響,用ξ表示乙隊的總得分. (Ⅰ)求ξ的分布列和數(shù)學期望;
(Ⅱ)求甲、乙兩隊總得分之和等于30分且甲隊獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐PABCD中,PD⊥底面ABCD,底面ABCD為正方形,PDDC,FPB的中點.求證:

(1)DFAP.

(2)在線段AD上是否存在點G,使GF⊥平面PBC?若存在,說明G點的位置,并證明你的結論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)yf(x)在定義域[1,1]上既是奇函數(shù),又是減函數(shù).

(1)求證:對任意x1x2[1,1],有[f(x1)f(x2)]·(x1x2)0

(2)f(1a)f(1a2)0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機調查某社區(qū)80個人,以研究這一社區(qū)居民的休閑方式是否與性別有關,得到下面的數(shù)據(jù)表:

休閑方式
性別

看電視

運動

合計

男性

20

10

30

女性

45

5

50

合計

65

15

80


(1)將此樣本的頻率估計為總體的概率,隨機調查3名在該社區(qū)的男性,設調查的3人是以運動為休閑方式的人數(shù)為隨機變量X,求X的分布列和期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認為休閑方式與性別有關系?

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ),其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)在x= 處取得最小值,則函數(shù)g(x)=f( ﹣x)是(
A.偶函數(shù)且它的圖象關于點(π,0)對稱
B.奇函數(shù)且它的圖象關于點(π,0)對稱
C.奇函數(shù)且它的圖象關于點( ,0)對稱
D.偶函數(shù)且它的圖象關于點( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)滿足f(2x)=x2﹣2ax+a2﹣1.
(Ⅰ)求f(x)的解析式,并寫出f(x)的定義域;
(Ⅱ)若f(x)在 上的值域為[﹣1,0],求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案