【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進行最后一輪較量,獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格1:4.人機大戰(zhàn)也引發(fā)全民對圍棋的關注,某學校社團為調查學生學習圍棋的情況,隨機抽取了100名學生進行調查.根據(jù)調查結果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.

(Ⅰ)根據(jù)已知條件完成列聯(lián)表,并據(jù)此資料你是否有的把握認為“圍棋迷”與性別有關?

非圍棋迷

圍棋迷

合計

10

55

合計

(Ⅱ)將上述調查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為X。若每次抽取的結果是相互獨立的,求X的分布列,期望 E(X) 和方差 D(X) .

【答案】(1)見解析;(2)見解析.

【解析】

(Ⅰ)由頻率分布直方圖可知,在抽取的人中,“圍棋迷”的人數(shù),得到的列聯(lián)表,根據(jù)公式求得的值,即可作出判斷.

(Ⅱ)由頻率分布直方圖,得抽到“圍棋迷”的頻率,得到從觀眾中抽取一名“圍棋迷”的概率,再由 ,得到隨機變量的分布列,利用期望的公式求得數(shù)學期望.

(Ⅰ)由頻率分布直方圖可知,在抽取的100人中,“圍棋迷”有25人,從而 列聯(lián)表如下

非圍棋迷

圍棋迷

合計

30

15

45

45

10

55

合計

75

25

100

列聯(lián)表中的數(shù)據(jù)代入公式計算,得

因為 ,所以沒有理由認為“圍棋迷”與性別有關.

(Ⅱ)由頻率分布直方圖知抽到“圍棋迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“圍棋迷”的概率為 .由題意 ,從而 的分布列為

0

1

2

3

. .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知方向向量為v=(1, )的直線l過點(0,﹣2 )和橢圓C: =1(a>b>0)的焦點,且橢圓C的中心關于直線l的對稱點在橢圓C的右準線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過點E(﹣2,0)的直線m交橢圓C于點M、N,滿足 = .cot∠MON≠0(O為原點).若存在,求直線m的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)給出定義:

是函數(shù)的導數(shù),是函數(shù)的導數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”,

某同學經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”:任意一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心,給定函數(shù),請根據(jù)上面探究結果:計算____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個單位長度,再向上平移1個單位長度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在 上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第31屆夏季奧林匹克運動會于2016年8月5日至8月21日在巴西里約熱內(nèi)盧舉行.如表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

第26屆亞特蘭大

中國

38

51

32

28

16

俄羅斯

24

23

27

32

26

(1)根據(jù)表格中兩組數(shù)據(jù)在答題卡上完成近五屆奧運會兩國代表團獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結論即可);

(2)如表是近五屆奧運會中國代表團獲得的金牌數(shù)之和(從第26屆算起,不包括之前已獲得的金牌數(shù))隨時間變化的數(shù)據(jù):

時間(屆)

26

27

28

29

30

金牌數(shù)之和(枚)

16

44

76

127

165

作出散點圖如圖:

由圖可以看出,金牌數(shù)之和與時間之間存在線性相關關系,請求出關于的線性回歸方程,并預測到第32屆奧運會時中國代表團獲得的金牌數(shù)之和為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高考復習經(jīng)過二輪“見多識廣”之后,為了研究考前“限時搶分”強化訓練次數(shù)與答題正確率﹪的關系,對某校高三某班學生進行了關注統(tǒng)計,得到如下數(shù)據(jù):

1

2

3

4

20

30

50

60

(1)求關于的線性回歸方程,并預測答題正確率是100﹪的強化訓練次數(shù);

(2)若用表示統(tǒng)計數(shù)據(jù)的“強化均值”(精確到整數(shù)),若“強化均值”的標準差在區(qū)間內(nèi),則強化訓練有效,請問這個班的強化訓練是否有效?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

, ,

樣本數(shù)據(jù)的標準差為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知曲線C1, 曲線C2,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系. 并在兩種坐標系中取相同的單位長度。

(1)寫出曲線C1,C2的極坐標方程;

(2)在極坐標系中,已知點A是射線l:與C1的交點,點B是l與C2的異于極點的交點,當在區(qū)間上變化時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,其中是不等于零的常數(shù)。

(1)寫出的定義域;

(2)求的單調遞增區(qū)間;

(3)已知函數(shù),定義:,.其中,表示函數(shù)上的最小值,表示函數(shù)上的最大值.例如:,,則,,,當時,設,不等式恒成立,求,的取值范圍.

查看答案和解析>>

同步練習冊答案