【題目】已知圓外的有一點(diǎn),過點(diǎn)作直線.

(1)當(dāng)直線過圓心時,求直線的方程;

(2)當(dāng)直線與圓相切時,求直線的方程;

(3)當(dāng)直線的傾斜角為時,求直線被圓所截得的弦長.

【答案】(1);(2);(3).

【解析】試題分析:

(1)由圓標(biāo)準(zhǔn)方程和是圓心坐標(biāo),由兩點(diǎn)得斜率,由點(diǎn)斜式寫出直線方程,化簡即得;

(2)分類,驗證斜率不存在時是否符合題意,斜率存在時,設(shè)出切線方程,由圓心到切線距離等于圓的半徑可求得參數(shù),得直線方程;

(3)寫出直線方程,求得圓心到直線的距離,利用垂徑定理可得弦長.

試題解析:

(1)由題意得,則直線的斜率為,

所以的方程為;

(2)當(dāng)斜率不存在時,直線的方程為;

當(dāng)斜率存在時,設(shè)直線的方程為,

,解得,所以的方程為,

所以直線的方程為.

(3)當(dāng)直線的傾斜角為時,直線的方程為.

,所求弦長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),過點(diǎn)動直線交與點(diǎn)兩點(diǎn).

(1)若,求直線的傾斜角;

(2)求線段中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知點(diǎn),和平面內(nèi)一點(diǎn)),過點(diǎn)任作直線與橢圓相交于, 兩點(diǎn),設(shè)直線, 的斜率分別為, , , ,試求, 滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有兩枚大小相同、質(zhì)地均勻的正四面體玩具,每個玩具的各個面上上分別寫著數(shù)字1,2,3,5,同時投擲這兩枚玩具一次,記為兩個朝下的面上的數(shù)字之和.

1)求事件不小于6”的概率;

2為奇數(shù)的概率和為偶數(shù)的概率是不是相等?證明你作出的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)若是函數(shù)的極值點(diǎn),求實數(shù)的值;

(2)若對任意的為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).

(1)直線且與曲線相切,求直線的極坐標(biāo)方程;

(2)點(diǎn)與點(diǎn)關(guān)于軸對稱,求曲線 上的點(diǎn)到點(diǎn)的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,橢圓過點(diǎn),直線軸于,且,為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)設(shè)是橢圓的上頂點(diǎn),過點(diǎn)分別作直線交橢圓兩點(diǎn),設(shè)這兩條直線的斜率分別為,且,證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子中,放有標(biāo)號分別為,,的四個大小相同的小球,現(xiàn)從這個盒子中,有放回地先后取得兩個小球,其標(biāo)號分別為

1)求事件的概率;

(2)求事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形的頂點(diǎn)坐標(biāo),直角頂點(diǎn),頂點(diǎn)軸上,點(diǎn)為線段的中點(diǎn),三角形外接圓的圓心為

(1)求邊所在直線方程;

(2)求圓的方程;

(3)直線過點(diǎn)且傾斜角為,求該直線被圓截得的弦長.

查看答案和解析>>

同步練習(xí)冊答案