【題目】已知直線是曲線的切線.

1)求函數(shù)的解析式,

2)若,證明:對于任意,有且僅有一個零點.

【答案】12)證明見解析

【解析】

1)對函數(shù)求導,并設切點,利用點既在曲線上、又在切線上,列出方程組,解得,即可得答案;

2)當x充分小時,當x充分大時,可得至少有一個零點. 再證明零點的唯一性,即對函數(shù)求導得,對兩種情況討論,即可得答案.

1)根據(jù)題意,,設直線與曲線相切于點.

根據(jù)題意,可得,解之得

所以.

2)由(1)可知,

則當x充分小時,當x充分大時,∴至少有一個零點.

,

①若,則,上單調(diào)遞增,∴有唯一零點.

②若,得有兩個極值點,

,∴,∴.

上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.

∴極大值為.,又

(0,16)上單調(diào)遞增,

有唯一零點.

綜上可知,對于任意,有且僅有一個零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司欲對員工飲食習慣進行一次調(diào)查,從某科室的100人中的飲食結(jié)構(gòu)調(diào)查結(jié)果統(tǒng)計如下表.

主食蔬菜

主食肉類

總計

不超過45

15

40

45歲以上

20

總計

1)完成列聯(lián)表,并判斷能否有99%的把握認為員工的飲食習慣與年齡有關?

2)在45歲以上員工中按照飲食習慣進行分層抽樣抽出一個容量為6的樣本,從這6個人中隨機抽取3個人,求這3個人都主食蔬菜的概率.

附:

0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題p:實數(shù)x滿足x24ax+3a20a0),命題q:實數(shù)x滿足x25x+60

1)若a1,且pq為真命題,求實數(shù)x的取值范圍;

2)若pq的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“隨機模擬方法”計算曲線與直線所圍成的曲邊三角形的面積時,用計算機分別產(chǎn)生了10個在區(qū)間[1,e]上的均勻隨機數(shù)xi10個在區(qū)間[0,1]上的均勻隨機數(shù),其數(shù)據(jù)如下表的前兩行.

x

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

y

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

lnx

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得這個曲邊三角形面積的一個近似值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),以下結(jié)論正確的個數(shù)為(

①當時,函數(shù)的圖象的對稱中心為;

②當時,函數(shù)上為單調(diào)遞減函數(shù);

③若函數(shù)上不單調(diào),則

④當時,上的最大值為15

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為α為參數(shù),直線ly=kxk0),以O為極點,x軸正半軸為極軸建立極坐標系.

(Ⅰ)求曲線C的極坐標方程;

(Ⅱ)若直線l與曲線C交于A,B兩點,求|OA||OB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點分別是,橢圓上短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為;

(1)求橢圓的方程;

(2)過作垂直于軸的直線交橢圓兩點(點在第二象限),是橢圓上位于直線兩側(cè)的動點,若,求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知多面體的底面是邊長為的菱形, 底面 ,且.

(1)證明:平面平面

(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一批用于手電筒的電池,每節(jié)電池的壽命服從正態(tài)分布(壽命單位:小時).考慮到生產(chǎn)成本,電池使用壽命在內(nèi)是合格產(chǎn)品.

1)求一節(jié)電池是合格產(chǎn)品的概率(結(jié)果四舍五入,保留一位小數(shù));

2)根據(jù)(1)中的數(shù)據(jù)結(jié)果,若質(zhì)檢部門檢查4節(jié)電池,記抽查電池合格的數(shù)量為,求隨機變量的分布列、數(shù)學期望及方差.

附:若隨機變量服從正態(tài)分布,則,,.

查看答案和解析>>

同步練習冊答案