【題目】已知拋物線 的焦點為,過點的直線相交于、兩點,點關于軸的對稱點為

(Ⅰ)判斷點是否在直線上,并給出證明;

(Ⅱ)設,求的內切圓的方程.

【答案】()證明見解析

【解析】本題主要考查拋物線方程、直線與拋物線的位置關系、對稱性、圓的方程、平面向量的數(shù)量積,以及考查邏輯思維能力、運算能力、分析與解決問題的綜合能力,同時考查方程的思想、數(shù)形結合的思想.

, , 的方程為.

)將代人并整理得

,

從而

直線的方程為

,

所以點在直線

)由知,

因為,

,

解得

所以的方程為

又由

故直線BD的斜率,

因而直線BD的方程為

因為KF的平分線,故可設圓心, BD的距離分別為.

,或(舍去),

故圓M的半徑.

所以圓M的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若, 都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求上述函數(shù)有零點的概率;

(2)若, 都是從區(qū)間上任取的一個數(shù),求成立的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)當時,求在區(qū)間上的最大值;

(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:, ,,其中.

(1)求數(shù)列的通項公式;

(2)記數(shù)列的前項和為,問是否存在正整數(shù),使得成立?若存在,求的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足,且,

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)設是數(shù)列的前項和,若對任意的都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某游樂場推出了一項趣味活動,參加活動者需轉動如圖所示的轉盤兩次,每次轉動后,待轉盤停止轉動時,記錄指針所指區(qū)域中的數(shù).設兩次記錄的數(shù)分別為,獎勵規(guī)則如下:①若,則獎勵玩具一個;②若,則獎勵水杯一個;③其余情況獎勵飲料一瓶.假設轉盤質地均勻,四個區(qū)域劃分均勻,小亮準備參加此項活動.

(1)求小亮獲得玩具的概率;

(2)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《續(xù)古摘奇算法》(楊輝)一書中有關于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對角線上的三個數(shù)的和都相等,我們規(guī)定:只要兩個幻方的對應位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數(shù)是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產品進行合理定價,將該定價按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價(元)

8

8.2

8.4

8.6

8.8

9

銷量(元)

90

84

83

80

75

68

(1)求回歸直線方程;

(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是4元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?

附: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網的發(fā)展,移動支付(又稱手機支付)越來越普通,某學校興趣小組為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調查,調查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有個人.把這個人按照年齡分成5組:第1組,第2組,第3組,第4組,第5組,然后繪制成如圖所示的頻率分布直方圖.其中,第一組的頻數(shù)為20.

(1)求的值,并根據(jù)頻率分布直方圖估計這組數(shù)據(jù)的眾數(shù);

(2)從第1,3,4組中用分層抽樣的方法抽取6人,求第1,3,4組抽取的人數(shù);

(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.

查看答案和解析>>

同步練習冊答案