精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

1)求方程的解集;

2)若關于x的方程上恒有解,求m的取值范圍;

3)若不等式上恒成立,求m的取值范圍;

4)若關于x的方程上有解,那么當m取某一確定值時,方程所有解的和記為,求所有可能值及相應的m的取值范圍.

【答案】1;(2;(3;(4)當時,;當時,;當時,

【解析】

先根據二倍角正弦與余弦公式,以及輔助角公式化簡函數

1)化簡方程,再根據正弦函數性質解方程;

2)根據正弦函數性質求值域,即得結果;

3)根據正弦函數性質求上最大值,即得結果;

4)先作出上圖象,再根據圖象確定解的情況以及對應m的取值范圍,最后求出對應解的和.

1

所以解集為;

2)當時,

因此

因為關于x的方程上恒有解,所以m的取值范圍為;

3)當時,

因此

因為不等式上恒成立,所以;

4

作出圖象,

由圖可知,當時,有三個解:;

時,有兩個解:

時,有四個解:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】中,D,E,F分別是邊,中點,下列說法正確的是(

A.

B.

C.,則的投影向量

D.若點P是線段上的動點,且滿足,則的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學在高二年級開設大學先修課程《線性代數》,共有50名同學選修,其中男同學30名,女同學20名.為了對這門課程的教學效果進行評估,學校按性別采用分層抽樣的方法抽取5人進行考核.

(Ⅰ)求抽取的5人中男、女同學的人數;

(Ⅱ)考核前,評估小組打算從抽取的5人中隨機選出2名同學進行訪談,求選出的兩名同學中恰有一名女同學的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1)要得到的圖像,只需要把函數的圖像上的對應點的橫坐標_________,縱坐標_________;

2)要得到的圖像,只需要把函數的圖像上的對應點的橫坐標_________,縱坐標___________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC的一個頂點為A(2,3),兩條高所在直線方程為x-2y+3=0和xy-4=0,求△ABC三邊所在直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取16個零件并測量其尺寸(單位:cm).根據長期生產經驗,可以認為這條生產線正常狀態(tài)下生產的零件的尺寸服從正態(tài)分布N(μσ2).

(1)假設生產狀態(tài)正常,X表示一天內抽取的16個零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數,P(X1)X的數學期望;

(2)一天內抽檢零件中如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認為這條生產線在這一天的生產過程可能出現(xiàn)了異常情況,需對當天的生產過程進行檢查.

①試說明上述監(jiān)控生產過程方法的合理性;

②下面是檢驗員在一天內抽取的16個零件的尺寸:

經計算得==9.97,s==≈0.212其中xi為抽取的第i個零件的尺寸,i=1,2,,16.

用樣本平均數作為μ的估計值,用樣本標準差s作為σ的估計值,利用估計值判斷是否需對當天的生產過程進行檢查?剔除﹣3+3之外的數據,用剩下的數據估計μσ(精確到0.01).

附:若隨機變量Z服從正態(tài)分布N(μ,σ2),P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 4160.959 2,0.09.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了解人們對“延遲退休年齡政策”的態(tài)度,責成人社部進行調研.人社部從網上年齡在15~65歲的人群中隨機調查100人,調查數據的頻率分布直方圖和支持“延遲退休”的人數與年齡的統(tǒng)計結果如下:

(1)由以上統(tǒng)計數據填列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;

(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機抽2人.

①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率.

②記抽到45歲以上的人數為,求隨機變量的分布列及數學期望.

參考數據:

,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司招聘員工,先由兩位專家面試,若兩位專家都同意通過,則視作通過初審予以錄用;若兩位專家都未同意通過,則視作未通過初審不予錄用;當這兩位專家意見不一致時,再由第三位專家進行復審,若能通過復審則予以錄用,否則不予錄用.設應聘人員獲得每位初審專家通過的概率為0.5,復審能通過的概率為0.3,各專家評審的結果相互獨立.

(Ⅰ)求某應聘人員被錄用的概率;

(Ⅱ)若4人應聘,設X為被錄用的人數,試求隨機變量X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求實數的值;

(2)令上的最小值為,求證:.

查看答案和解析>>

同步練習冊答案