【題目】已知橢圓左右焦點(diǎn)為,左頂點(diǎn)為A(-2.0),上頂點(diǎn)為B,且∠=.

(1)求橢圓C的方程;

(2)探究軸上是否存在一定點(diǎn)P,過(guò)點(diǎn)P的任意直線與橢圓交于MN不同的兩點(diǎn),MN不與點(diǎn)A重合,使得 為定值,若存在,求出點(diǎn)P;若不存在,說(shuō)明理由.

【答案】(1);(2)存在點(diǎn)使得為定值

【解析】

(1)由題意知a,結(jié)合∠=可得c,.再利用a2b2+c2,得b2即可.

(2)直線方程與橢圓方程聯(lián)立可得根與系數(shù)的關(guān)系,利用數(shù)量積為定值,得到k與m的關(guān)系,即可得出結(jié)論.

(1)由題意知:又∠=,所以為正三角形,

,,

橢圓C的方程為;

(2)設(shè)直線MN的為,M,N,

,,

,

,消去y得,

,

由韋達(dá)定理,,

,

,

,

為定值,則,即,

即存在點(diǎn)使得為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點(diǎn),垂足為E,點(diǎn)FPB上一點(diǎn),則下列判斷中不正確的是( )﹒

A.平面PACB.C.D.平面平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)第一高摩天輪南昌之星摩天輪高度為,其中心距地面,半徑為,若某人從最低點(diǎn)處登上摩天輪,摩天輪勻速旋轉(zhuǎn),那么此人與地面的距離將隨時(shí)間變化,后達(dá)到最高點(diǎn),從登上摩天輪時(shí)開(kāi)始計(jì)時(shí).

1)求出人與地面距離與時(shí)間的函數(shù)解析式;

2)從登上摩天輪到旋轉(zhuǎn)一周過(guò)程中,有多長(zhǎng)時(shí)間人與地面距離大于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖像上存在點(diǎn),函數(shù)的圖像上存在點(diǎn),關(guān)于原點(diǎn)對(duì)稱,則的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中,已知,對(duì)任意都成立,數(shù)列的前n項(xiàng)和為

1)若是等差數(shù)列,求k的值;

2)若,,求

3)是否存在實(shí)數(shù)k,使數(shù)列是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng),按某順序排列后成等差數(shù)列?若存在,求出所有k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 天氣預(yù)報(bào)說(shuō)明天下雨的概率為,則明天一定會(huì)下雨

B. 不可能事件不是確定事件

C. 統(tǒng)計(jì)中用相關(guān)系數(shù)來(lái)衡量?jī)蓚(gè)變量的線性關(guān)系的強(qiáng)弱,若則兩個(gè)變量正相關(guān)很強(qiáng)

D. 某種彩票的中獎(jiǎng)率是,則買(mǎi)1000張這種彩票一定能中獎(jiǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書(shū)店銷售剛剛上市的某高二數(shù)學(xué)單元測(cè)試卷,按事先擬定的價(jià)格進(jìn)行5天試銷,每種單價(jià)試銷1天,得到如下數(shù)據(jù):

單價(jià)x/

18

19

20

21

22

銷量y/冊(cè)

61

56

50

48

45

1)求試銷天的銷量的方差和關(guān)于的回歸直線方程;

附: .

2)預(yù)計(jì)以后的銷售中,銷量與單價(jià)服從上題中的回歸直線方程,已知每?jī)?cè)單元測(cè)試卷的成本是10元,為了獲得最大利潤(rùn),該單元測(cè)試卷的單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)如圖,在多面體中, 是正方形, 平面, 平面, ,點(diǎn)為棱的中點(diǎn).

(1)求證:平面平面

(2)若,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案