【題目】如圖,設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為l,過(guò)準(zhǔn)線l上一點(diǎn)且斜率為k的直線交拋物線C于A,B兩點(diǎn),線段AB的中點(diǎn)為P,直線PF交拋物線C于D,E兩點(diǎn).
(1)求拋物線C的方程及k的取值范圍;
(2)是否存在k值,使點(diǎn)P是線段DE的中點(diǎn)?若存在,求出k值,若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)不存在,理由見(jiàn)解析.
【解析】
(1)由拋物線準(zhǔn)線方程可以求出p的值,進(jìn)而得到拋物線方程,聯(lián)立直線與拋物線方程,由于直線與拋物線由兩個(gè)交點(diǎn), 所以,就可以得到k的取值范圍;
(2)由(1)得,所以,求出點(diǎn)P的坐標(biāo),可得直線PF的方程,聯(lián)立拋物線方程,再由韋達(dá)定理,結(jié)合中點(diǎn)坐標(biāo)公式求解即可得出結(jié)論.
(1)由已知得,
∴.
∴拋物線方程為.
設(shè)的方程為,,,,,
由得.
,
解得,
注意到不符合題意,所以.
(2)不存在k值,使點(diǎn)P是線段DE的中點(diǎn),理由如下:
由(1)得,
所以,
所以,,
直線PF的方程為.
由得,
.
點(diǎn)P為線段DE的中點(diǎn)時(shí),有,即,
因?yàn)?/span>,所以此方程無(wú)實(shí)數(shù)根,
因此不存在k值,使點(diǎn)P是線段DE的中點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列命題:
①函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;
②若函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍是;
③函數(shù)在上單調(diào)遞減;
④當(dāng)時(shí),函數(shù)的最大值為.
上述命題正確的是__________(填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形中,,,過(guò)點(diǎn)作的垂線,交的延長(zhǎng)線于點(diǎn),.連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點(diǎn),為的中點(diǎn),且平面平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)g(x)=﹣4sin2()+2圖象上點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),再向右平移個(gè)單位長(zhǎng)度,得到函數(shù)f(x)的圖象,則下列說(shuō)法正確的是( )
A.函數(shù)f(x)在區(qū)間[,]上單調(diào)遞減
B.函數(shù)f(x)的最小正周期為2π
C.函數(shù)f(x)在區(qū)間[,]的最小值為
D.x是函數(shù)f(x)的一條對(duì)稱軸
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)ex+ax2(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2(x1<x2),證明:x1+x2<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,已知橢圓上存在點(diǎn),使,且這樣的點(diǎn)有且只有兩個(gè).
(1)求橢圓的離心率;
(2)過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),且,是坐標(biāo)原點(diǎn),求的面積取得最大值時(shí)的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人民生活水平的日益提高,某小區(qū)居民擁有私家車(chē)的數(shù)量與日俱增.由于該小區(qū)建成時(shí)間較早,沒(méi)有配套建造地下停車(chē)場(chǎng),小區(qū)內(nèi)無(wú)序停放的車(chē)輛造成了交通的擁堵.該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年小區(qū)登記在冊(cè)的私家車(chē)數(shù)量(累計(jì)值,如147表示2016年小區(qū)登記在冊(cè)的所有車(chē)輛數(shù),其余意義相同),得到如下數(shù)據(jù):
編號(hào) | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
數(shù)量(單位:輛) | 37 | 104 | 147 | 196 | 216 |
(1)若私家車(chē)的數(shù)量與年份編號(hào)滿足線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)2020年該小區(qū)的私家車(chē)數(shù)量;
(2)小區(qū)于2018年底完成了基礎(chǔ)設(shè)施改造,劃設(shè)了120個(gè)停車(chē)位.為解決小區(qū)車(chē)輛亂停亂放的問(wèn)題,加強(qiáng)小區(qū)管理,物業(yè)公司決定禁止無(wú)車(chē)位的車(chē)輛進(jìn)入小區(qū).由于車(chē)位有限,物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競(jìng)拍的方式將車(chē)位對(duì)業(yè)主出租,租期一年,競(jìng)拍方案如下:①截至2018年己登記在冊(cè)的私家車(chē)業(yè)主擁有競(jìng)拍資格;②每車(chē)至多中請(qǐng)一個(gè)車(chē)位,由車(chē)主在競(jìng)拍網(wǎng)站上提出申請(qǐng)并給出自己的報(bào)價(jià);③根據(jù)物價(jià)部門(mén)的規(guī)定,競(jìng)價(jià)不得超過(guò)1200元;④申請(qǐng)階段截止后,將所有申請(qǐng)的業(yè)主報(bào)價(jià)自高到低排列,排在前120位的業(yè)主以其報(bào)價(jià)成交;⑤若最后出現(xiàn)并列的報(bào)價(jià),則以提出申請(qǐng)的時(shí)間在前的業(yè)主成交,為預(yù)測(cè)本次競(jìng)拍的成交最低價(jià),物業(yè)公司隨機(jī)抽取了有競(jìng)拍資格的40位業(yè)主,進(jìn)行了競(jìng)拍意向的調(diào)查,并對(duì)他們的擬報(bào)競(jìng)價(jià)進(jìn)行了統(tǒng)計(jì),得到如圖頻率分布直方圖:
(i)求所抽取的業(yè)主中有意向競(jìng)拍報(bào)價(jià)不低于1000元的人數(shù);
(ii)如果所有符合條件的車(chē)主均參與競(jìng)拍,利用樣本估計(jì)總體的思想,請(qǐng)你據(jù)此預(yù)測(cè)至少需要報(bào)價(jià)多少元才能競(jìng)拍車(chē)位成功?(精確到整數(shù))
參考公式及數(shù)據(jù):對(duì)于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘估計(jì)分別為:;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)x+alnx.
(1)求f(x)在(1,f(1))處的切線方程(用含a的式子表示)
(2)討論f(x)的單調(diào)性;
(3)若f(x)存在兩個(gè)極值點(diǎn)x1,x2,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com