【題目】對(duì)于數(shù)對(duì)序列、、,記,,其中表示兩個(gè)數(shù)中最大的數(shù).

1)對(duì)于數(shù)對(duì)序列,求,的值;

2)記、、、四個(gè)數(shù)中最小值,對(duì)于由兩個(gè)數(shù)對(duì)、組成的數(shù)對(duì)序列、,試分別對(duì)的兩種情況比較的大。

3)在由個(gè)數(shù)對(duì)、、組成的所有數(shù)對(duì)序列中,寫出一個(gè)數(shù)對(duì)序列使最小,并寫出的值.(只需寫出結(jié)論)

【答案】1,;(2;(3、、

、、,.

【解析】

1)利用,,可求得,的值;

2)由,,分類討論,利用新定義,可比較出的大。

3)根據(jù)題中新定義可得出結(jié)論.

1,;

2,.

當(dāng)時(shí),,

,所以,;

當(dāng)時(shí),,

,所以,.

綜上所述,無論,均有;

3)根據(jù)數(shù)對(duì)序列:、、,

可得,,,,.

逐一檢驗(yàn)可得,此數(shù)對(duì)序列使得最小.

、、、

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】AB兩組各有7位病人,他們服用某種藥物后的康復(fù)時(shí)間(單位:天)記錄如下:

A組:1011,12,1314,15,16;

B組:12,13,15,16,17,14,.

假設(shè)所有病人的康復(fù)時(shí)間相互獨(dú)立,從A,B兩組隨機(jī)各選1人,A組選出的人記為甲,B組選出的人記為乙.

1)求甲的康復(fù)時(shí)間不少于14天的概率;

2)如果,求甲的康復(fù)時(shí)間比乙的康復(fù)時(shí)間長(zhǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABCA1B1C1中,E是棱AB的中點(diǎn),動(dòng)點(diǎn)F是側(cè)面ACC1A1(包括邊界)上一點(diǎn),若EF//平面BCC1B1,則動(dòng)點(diǎn)F的軌跡是(

A.線段B.圓弧

C.橢圓的一部分D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1ab0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P(﹣1,)在橢圓C上,且|PF2|

1)求橢圓C的方程;

2)過點(diǎn)F2的直線l與橢圓C交于A,B兩點(diǎn),M為線段AB的中點(diǎn),若橢圓C上存在點(diǎn)N,滿足3O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知為橢圓的上頂點(diǎn),P為橢圓E上異于上、下頂點(diǎn)的一個(gè)動(dòng)點(diǎn).當(dāng)點(diǎn)P的橫坐標(biāo)為時(shí),

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)設(shè)Mx軸的正半軸上的一個(gè)動(dòng)點(diǎn).

①若點(diǎn)P在第一象限內(nèi),且以AP為直徑的圓恰好與x軸相切于點(diǎn)M,求AP的長(zhǎng).

②若,是否存在點(diǎn)N,滿足,且AN的中點(diǎn)恰好在橢圓E上?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間和極值;

2)若存在滿足,證明成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的焦點(diǎn)在軸上.

1)若橢圓的焦距為1,求橢圓的方程;

2)設(shè)分別是橢圓的左、右焦點(diǎn),為橢圓上的第一象限內(nèi)的點(diǎn),直線軸與點(diǎn),并且,證明:當(dāng)變化時(shí),點(diǎn)在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)設(shè)x1,y1,證明x+yxy;

(Ⅱ)1abc,證明logab+logbc+logcalogba+logcb+logac

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)若點(diǎn)在直線上,且,求直線的斜率;

2)若,求曲線上的點(diǎn)到直線的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案