【題目】已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點恰好是拋物線y= x2的焦點,離心率等于 .
(1)求橢圓C的方程;
(2)過橢圓C的右焦點F作直線l交橢圓C于A、B兩點,交y軸于M點,若 =λ1 , ,求證:λ1+λ2為定值.
【答案】
(1)解:設(shè)橢圓C的方程為 ,則由題意知b=1.∴ .∴a2=5.
∴橢圓C的方程為
(2)解:設(shè)A、B、M點的坐標(biāo)分別為A(x1,y1),B(x2,y2),M(0,y0).
又易知F點的坐標(biāo)為(2,0).
顯然直線l存在的斜率,設(shè)直線l的斜率為k,則直線l的方程是y=k(x﹣2).
將直線l的方程代入到橢圓C的方程中,消去y并整理得(1+5k2)x2﹣20k2x+20k2﹣5=0.∴ .
又∵ .∴
【解析】(1)根據(jù)橢圓C的一個頂點恰好是拋物線 的焦點,離心率等于 .易求出a,b的值,得到橢圓C的方程.(2)設(shè)A、B、M點的坐標(biāo)分別為A(x1 , y1),B(x2 , y2),設(shè)直線l的斜率為k,則直線l的方程是y=k(x﹣2),然后采用“聯(lián)立方程”+“設(shè)而不求”+“韋達(dá)定理”,結(jié)合已知中 , ,求出λ1+λ2值,即可得到結(jié)論.
【考點精析】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識點,需要掌握橢圓標(biāo)準(zhǔn)方程焦點在x軸:,焦點在y軸:才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三數(shù)學(xué)競賽初賽考試后,對考生的成績進(jìn)行統(tǒng)計(考生成績均不低于90分,滿分150分),將成績按如下方式分成六組,第一組[90,100)、第二組[100,110)…第六組[140,150].圖(1)為其頻率分布直方圖的一部分,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人. (Ⅰ)請補(bǔ)充完整頻率分布直方圖,并估計這組數(shù)據(jù)的平均數(shù)M;
(Ⅱ)若不低于120分的同學(xué)進(jìn)入決賽,不低于140分的同學(xué)為種子選手,完成下面2×2
列聯(lián)表(即填寫空格處的數(shù)據(jù)),并判斷是否有99%的把握認(rèn)為“進(jìn)入決賽的同學(xué)
成為種子選手與專家培訓(xùn)有關(guān)”.
| [140,150] | 合計 | |
參加培訓(xùn) | 5 | 8 | |
未參加培訓(xùn) | |||
合計 | 4 |
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從0,1,2,3,4五個數(shù)中任取的一個數(shù),是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若是從區(qū)間上任取的一個數(shù),是從區(qū)間上任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“牟合方蓋”是我國古代數(shù)學(xué)家劉徽在研究球的體積的過程中構(gòu)造的一個和諧優(yōu)美的幾何體.它由完全相同的四個曲面構(gòu)成,相對的兩個曲面在同一個圓柱的側(cè)面上,好似兩個扣合(牟合)在一起的方形傘(方蓋).其直觀圖如圖,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其主視圖和側(cè)視圖完全相同時,它的俯視圖可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求與雙曲線有相同的焦點且過點的雙曲線標(biāo)準(zhǔn)方程;
(2)求焦點在直線上的拋物線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知圓的圓心是直線與軸的交點,且與直線相切,求圓的標(biāo)準(zhǔn)方程;
(2)已知圓,直線過點與圓相交于兩點,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中, = == 分別在上, ,現(xiàn)將四邊形沿折起,使.
(1)若,在折疊后的線段上是否存在一點,使得平面?若存在,求出的值;若不存在,說明理由;
(2)求三棱錐的體積的最大值,并求出此時點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①殘差可用來判斷模型擬合的效果;
②設(shè)有一個回歸方程,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程必過 ;
④在一個2×2列聯(lián)表中,由計算得=13.079,則有99%的把握確認(rèn)這兩個變量間有關(guān)系(其中);
其中錯誤的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com