【題目】已知函數(shù) 的最小正周期為4π,則( )
A.函數(shù)f(x)的圖象關(guān)于原點對稱
B.函數(shù)f(x)的圖象關(guān)于直線 對稱
C.函數(shù)f(x)圖象上的所有點向右平移 個單位長度后,所得的圖象關(guān)于原點對稱
D.函數(shù)f(x)在區(qū)間(0,π)上單調(diào)遞增
【答案】C
【解析】解:函數(shù) 的最小正周期為4π,
∴ ,
可得ω= .
那么f(x)=sin( ).
由對稱中心橫坐標(biāo)方程: ,k∈Z,
可得:x=2kπ
∴A不對;
由對稱軸方程: = ,k∈Z,
可得:x=2k ,k∈Z,
∴B不對;
函數(shù)f(x)圖象上的所有點向右平移 個單位,可得:sin[ (x﹣ ) ]=sin2x,圖象關(guān)于原點對稱.
∴C對.
令 ≤ ,k∈Z,
可得: ≤x≤
∴函數(shù)f(x)在區(qū)間(0,π)上不是單調(diào)遞增.
∴D不對;
故選C
函數(shù) 的最小正周期為4π,求出ω,可得f(x)解析式,對各選項進(jìn)行判斷即可
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A,B兩組各有7位病人,他們服用某種藥物后的康復(fù)時間(單位:天)記錄如下:
A組:10,11,12,13,14,15,16
B組:12,13,15,16,17,14,a
假設(shè)所有病人的康復(fù)時間互相獨立,從A,B兩組隨機各選1人,A組選出的人記為甲,B組選出的人記為乙.
(Ⅰ)求甲的康復(fù)時間不少于14天的概率;
(Ⅱ)如果人康復(fù)時間的方差相等?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,設(shè)邊a,b,c所對的角為A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2 . (Ⅰ)若b+c=5,求b,c的值;
(Ⅱ)若 ,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=eax+λlnx,其中a<0,0<λ< ,e是自然對數(shù)的底數(shù)
(1)求證:函數(shù)f(x)有兩個極值點;
(2)若﹣e≤a<0,求證:函數(shù)f(x)有唯一零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) 的最大值為2,它的最小正周期為2π. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若g(x)=cosxf(x),求g(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分別為邊AC,AB的中點,點F,G分別為線段CD,BE的中點.將△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.點Q為線段A1B上的一點,如圖2.
(Ⅰ)求證:A1F⊥BE;
(Ⅱ)線段A1B上是否存在點Q使得FQ∥平面A1DE?若存在,求出A1Q的長,若不存在,請說明理由;
(Ⅲ)當(dāng) 時,求直線GQ與平面A1DE所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量y(g)與尺寸x(mm)之間近似滿足關(guān)系式y(tǒng)=axb(a,b為大于0的常數(shù)).現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
尺寸(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量(g) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
對數(shù)據(jù)作了初步處理,相關(guān)統(tǒng)計量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(Ⅰ)根據(jù)所給數(shù)據(jù),求y關(guān)于x的回歸方程;
(Ⅱ)按照某項指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間( , )內(nèi)時為優(yōu)等品.現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記ξ為取到優(yōu)等品的件數(shù),試求隨機變量ξ的分布列和期望.
附:對于一組數(shù)據(jù)(v1 , u1),(v2 , u2),…,(vn , un),其回歸直線u=α+βv的斜率和截距的最小二乘估計分別為 = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體ABCDE中,AB=AC,平面BCDE⊥平面ABC,BE∥CD,CD⊥BC,BE=1,BC=2,CD=3,M為BC的中點.
(1)若N是棱AE上的動點,求證:DE⊥MN;
(2)若平面ADE與平面ABC所成銳二面角為60°,求棱AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com