精英家教網 > 高中數學 > 題目詳情

【題目】某汽車公司最近研發(fā)了一款新能源汽車,并在出廠前對100輛汽車進行了單次最大續(xù)航里程的測試,F(xiàn)對測試數據進行分析,得到如圖所示的頻率分布直方圖:

1)估計這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數據用該組區(qū)間的中點值代表).

2)根據大量的汽車測試數據,可以認為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經計算第(1)問中樣本標準差的近似值為50。用樣本平均數作為的近似值,用樣本標準差作為的估計值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.

參考數據:若隨機變量服從正態(tài)分布,則,,.

3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動,客戶可根據拋擲硬幣的結果,操控微型遙控車在方格圖上行進,若遙控車最終停在“勝利大本營”,則可獲得購車優(yōu)惠券3萬元。已知硬幣出現(xiàn)正、反面的概率都是0.5方格圖上標有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動一次。若擲出正面,遙控車向前移動一格(從)若擲出反面遙控車向前移動兩格(從),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結束。設遙控車移到第格的概率為P試證明是等比數列,并求參與游戲一次的顧客獲得優(yōu)惠券金額的期望值。

【答案】(1)300;(2)0.8186;(3)證明見解析,期望值為,約2萬元.

【解析】

0000

(1)利用每組中點值乘以其頻率,再求和即可得到平均值;

(2)(1)可知,利用求解即可;

(3)根據題意可知:得出移到第n格兩種方式①遙控車先到第格,又擲出反面;②遙控車先到第格,又擲出正面,由此得到,利用定義證明其為等比數列,結合累加法得出的表達式,由此得到,根據題意得出參與游戲一次的顧客獲得優(yōu)惠券金額為萬元,0,分別求出0的概率,然后求出期望即可.

1(千米)

2)因為服從正態(tài)分布

所以

3)遙控車開始在第0格為必然事件,,第一次擲硬幣出現(xiàn)正面,遙控車移到第一格,其概率為,。遙控車移到第n)格的情況是下列兩種,而且也只有兩種。

①遙控車先到第格,又擲出反面,其概率為

②遙控車先到第格,又擲出正面,其概率為

所以,

時,數列是公比為的等比數列

以上各式相加,得

), 獲勝的概率

失敗的概率

設參與游戲一次的顧客獲得優(yōu)惠券金額為萬元,0

X的期望

參與游戲一次的顧客獲得優(yōu)惠券金額的期望值為,約2萬元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求證:對任意實數,都有;

(2)若,是否存在整數,使得在上,恒有成立?若存在,請求出的最大值;若不存在,請說明理由.(

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,,,函數.

1)設,,若是奇函數,求的值;

2)設,,判斷函數上的單調性并加以證明;

3)設,,函數的圖象是否關于某垂直于軸的直線對稱?如果是,求出該對稱軸,如果不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若定義域均為D的三個函數f(x),g(x),h(x)滿足條件:對任意x∈D,點(x,g(x)與點(x,h(x)都關于點(x,f(x)對稱,則稱h(x)是g(x)關于f(x)的“對稱函數”.已知g(x)=,f(x)=2x+b,h(x)是g(x)關于f(x)的“對稱函數”,且h(x)≥g(x)恒成立,則實數b的取值范圍是_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線上的動點到點的距離與到直線的距離相等.

1)求曲線的軌跡方程;

2)過點分別作射線、交曲線于不同的兩點、,且.試探究直線是否過定點?如果是,請求出該定點;如果不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某同學在一山坡處看對面山頂上的一座鐵塔,如圖所示,塔及所在的山崖可視為圖中的豎線,塔高80米,山高220米,200米,圖中所示的山坡可視為直線且點在直線上,與水平地面的夾角為,.

1)求塔尖到山坡的距離;(精確到米)

2)問此同學(忽略身高)距離山崖的水平地面多高時,觀看塔的視角最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知

(1)若上恒成立,求實數的取值范圍;

(2)證明:當時,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,定義函數,給出下列命題:①;②函數是奇函數;③當時,若,,總有成立,其中所有正確命題的序號是( )

A.B.①②C.D.②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】武漢有九省通衢之稱,也稱為江城,是國家歷史文化名城.其中著名的景點有黃鶴樓、戶部巷、東湖風景區(qū)等等.

1)為了解·勞動節(jié)當日江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:

現(xiàn)從年齡在內的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人,記4人中年齡在內的人數為,求;

2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節(jié)當日投入至少1艘至多3型游船供游客乘坐觀光.2010201910年間的數據資料顯示每年勞動節(jié)當日客流量(單位:萬人)都大于1.將每年勞動節(jié)當日客流量數據分成3個區(qū)間整理得表:

勞動節(jié)當日客流量

頻數(年)

2

4

4

以這10年的數據資料記錄的3個區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動節(jié)當日客流量相互獨立.

該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節(jié)當日型游船最多使用量(單位:艘)要受當日客流量(單位:萬人)的影響,其關聯(lián)關系如下表:

勞動節(jié)當日客流量

型游船最多使用量

1

2

3

若某艘型游船在勞動節(jié)當日被投入且被使用,則游船中心當日可獲得利潤3萬元;若某艘型游船勞動節(jié)當日被投入卻不被使用,則游船中心當日虧損0.5萬元.(單位:萬元)表示該游船中心在勞動節(jié)當日獲得的總利潤,的數學期望越大游船中心在勞動節(jié)當日獲得的總利潤越大,問該游船中心在2020年勞動節(jié)當日應投入多少艘型游船才能使其當日獲得的總利潤最大?

查看答案和解析>>

同步練習冊答案