【題目】如圖,已知?jiǎng)訄A過點(diǎn),且在軸上截得弦的長(zhǎng)為4.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)已知,過點(diǎn)的直線交軌跡于,兩點(diǎn),直線,分別與軌跡交于,兩點(diǎn),設(shè)直線,的斜率分別為,,試問是否為定值?若是,求出此定值;若不是,請(qǐng)說明理由.
【答案】(1);(2)為定值,理由見解析.
【解析】
(1)設(shè)動(dòng)圓圓心坐標(biāo),利用弦心距,半弦長(zhǎng),半徑所成的直角三角形列方程,化簡(jiǎn)可得;
(2)設(shè)A,B的坐標(biāo),AB的方程,與拋物線方程聯(lián)立可得根與系數(shù)關(guān)系,當(dāng)時(shí),可得;當(dāng)時(shí),由A,F可得AC的方程,與拋物線方程聯(lián)立可得A,C坐標(biāo)的關(guān)系,同法得B,D坐標(biāo)的關(guān)系,然后用C,D坐標(biāo)表示后可轉(zhuǎn)化為A,B的坐標(biāo),從而得到與的關(guān)系,得到定值.
(1)如圖所示,設(shè)動(dòng)圓的圓心,由題意,,
當(dāng)不在軸上時(shí),過作交于,則是的中點(diǎn),
∴,
又,
∴,化簡(jiǎn)得;
又當(dāng)在軸上時(shí),由已知可得與重合,點(diǎn)的坐標(biāo)也滿足方程,
∴動(dòng)圓圓心的軌跡的方程為;
(2)為定值,下面給出證明:
設(shè)直線的方程為,,
,,不妨設(shè),
聯(lián)立得,
∴,
①當(dāng)時(shí),
若,則,,,
:,,
∴,.
若,同理可得;
②當(dāng)時(shí),直線的方程為,
聯(lián)立得,
則,故,同理,
故,
∴(定值).
綜上得為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調(diào)整眼及頭部的血液循環(huán),調(diào)節(jié)肌肉,改善眼的疲勞,達(dá)到預(yù)防近視等眼部疾病的目的.某學(xué)校為了調(diào)查推廣眼保健操對(duì)改善學(xué)生視力的效果,在應(yīng)屆高三的全體800名學(xué)生中隨機(jī)抽取了100名學(xué)生進(jìn)行視力檢查,并得到如圖的頻率分布直方圖.
(1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計(jì)全年級(jí)視力在5.0以上的人數(shù);
(2)為了研究學(xué)生的視力與眼保健操是否有關(guān)系,對(duì)年級(jí)不做眼保健操和堅(jiān)持做眼保健操的學(xué)生進(jìn)行了調(diào)查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過0.005的前提下認(rèn)為視力與眼保健操有關(guān)系?
是否做操 是否近視 | 不做操 | 做操 |
近視 | 44 | 32 |
不近視 | 6 | 18 |
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種型號(hào)的電視機(jī)零配件,為了預(yù)測(cè)今年月份該型號(hào)電視機(jī)零配件的市場(chǎng)需求量,以合理安排生產(chǎn),工廠對(duì)本年度月份至月份該型號(hào)電視機(jī)零配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)(單位:元)和銷售量(單位:千件)之間的組數(shù)據(jù)如下表所示:
月份 | ||||||
銷售單價(jià)(元) | ||||||
銷售量(千件) |
(1)根據(jù)1至月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到);
(2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號(hào)電視機(jī)零配件的生產(chǎn)成本為每件元,那么工廠如何制定月份的銷售單價(jià),才能使該月利潤(rùn)達(dá)到最大(計(jì)算結(jié)果精確到)?
參考公式:回歸直線方程,其中.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線與曲線,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,已知與,的公共點(diǎn)分別為,,,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水稻是人類重要的糧食作物之一,耕種與食用的歷史都相當(dāng)悠久,日前我國南方農(nóng)戶在播種水稻時(shí)一般有直播、撒酒兩種方式.為比較在兩種不同的播種方式下水稻產(chǎn)量的區(qū)別,某市紅旗農(nóng)場(chǎng)于2019年選取了200塊農(nóng)田,分成兩組,每組100塊,進(jìn)行試驗(yàn).其中第一組采用直播的方式進(jìn)行播種,第二組采用撒播的方式進(jìn)行播種.得到數(shù)據(jù)如下表:
產(chǎn)量(單位:斤) 播種方式 | [840,860) | [860,880) | [880,900) | [900,920) | [920,940) |
直播 | 4 | 8 | 18 | 39 | 31 |
散播 | 9 | 19 | 22 | 32 | 18 |
約定畝產(chǎn)超過900斤(含900斤)為“產(chǎn)量高”,否則為“產(chǎn)量低”
(1)請(qǐng)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)估計(jì)100塊直播農(nóng)田的平均產(chǎn)量(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)
(2)請(qǐng)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“產(chǎn)量高”與“播種方式”有關(guān)?
產(chǎn)量高 | 產(chǎn)量低 | 合計(jì) | |
直播 | |||
散播 | |||
合計(jì) |
附:
P(K2≥k0) | 0.10 | 0.010 | 0.001 |
k0 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)進(jìn)行有獎(jiǎng)促銷活動(dòng),顧客購物每滿500元,可選擇返回50元現(xiàn)金或參加一次抽獎(jiǎng),抽獎(jiǎng)規(guī)則如下:從1個(gè)裝有6個(gè)白球、4個(gè)紅球的箱子中任摸一球,摸到紅球就可獲得100元現(xiàn)金獎(jiǎng)勵(lì),假設(shè)顧客抽獎(jiǎng)的結(jié)果相互獨(dú)立.
(Ⅰ)若顧客選擇參加一次抽獎(jiǎng),求他獲得100元現(xiàn)金獎(jiǎng)勵(lì)的概率;
(Ⅱ)某顧客已購物1500元,作為商場(chǎng)經(jīng)理,是希望顧客直接選擇返回150元現(xiàn)金,還是選擇參加3次抽獎(jiǎng)?說明理由;
(Ⅲ)若顧客參加10次抽獎(jiǎng),則最有可能獲得多少現(xiàn)金獎(jiǎng)勵(lì)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自湖北爆發(fā)新型冠狀病毒肺炎疫情以來,湖北某市醫(yī)護(hù)人員和醫(yī)療、生活物資嚴(yán)重匱乏,全國各地紛紛馳援.某運(yùn)輸隊(duì)接到從武漢送往該市物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送240t物資.已知每輛卡車每天往返的次數(shù)為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運(yùn)輸隊(duì)所花的成本最低為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸長(zhǎng)為2,直線被橢圓截得的線段長(zhǎng)為,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)是否存在過點(diǎn)且斜率為的直線,與橢圓交于、兩點(diǎn)時(shí),作線段的垂直平分線分別交軸、軸于、,垂足為,使得與的面積相等,若存在,試求出直線的方程,若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com