【題目】如圖,四邊形是邊長為2的菱形,平面的中點(diǎn).

(1)求證:平面平面;

(2)若,求三棱錐的體積.

【答案】(1)詳見解析(2)1

【解析】

試題分析:(1)證明面面垂直,一般利用面面垂直判定定理,即從線面垂直出發(fā)給予證明,而題中已知線面垂直平面,因此可借助平行進(jìn)行轉(zhuǎn)化論證,這往往需利用平幾知識(shí),如本題利用三角形中位線性質(zhì),即得平面(2)求三棱錐體積,關(guān)鍵在于確定高,而高的尋找往往利用線面垂直平面,利用分割法得三棱錐的體積,轉(zhuǎn)化的三個(gè)錐的高分別為,最后代入體積公式可得結(jié)果

試題解析:

(1)證明:

如圖, 連接點(diǎn),連接,

四邊形是菱形,

,

中點(diǎn),

,

平面,平面,

平面,

平面平面.................6分

(2)解:四邊形是邊長為2的菱形,

平面,

,

,,........................ 9分

.........................................12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱柱的底面是邊長為的菱形,且,平面,設(shè)的中點(diǎn)

1)求證:平面

2)點(diǎn)在線段上,且平面,求平面和平面所成銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),

(Ⅰ)討論的極值點(diǎn)的個(gè)數(shù);

(Ⅱ)若對(duì)于任意,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】車美容為吸引客,推出優(yōu)活動(dòng):對(duì)次消費(fèi)的顧客,按元/次收費(fèi), 并注冊(cè)成為會(huì)員, 對(duì)會(huì)員逐消費(fèi)給予應(yīng)優(yōu),標(biāo)準(zhǔn)如下

消費(fèi)次第

收費(fèi)比例

該公司從注冊(cè)的會(huì)員中, 隨機(jī)抽取了位進(jìn)行統(tǒng)計(jì), 得到統(tǒng)計(jì)數(shù)據(jù)如下:

消費(fèi)次第

頻數(shù)

假設(shè)汽車美容一次, 公司成本為元, 根據(jù)所給數(shù)據(jù), 解答下列問題:

1估計(jì)該公司一位會(huì)員至少消費(fèi)兩次的概率;

2某會(huì)員僅消費(fèi)兩次, 求這兩次消費(fèi)中, 公司獲得的平均利潤;

3設(shè)該公司從至少消費(fèi), 求這顧客消費(fèi)次數(shù)用分層抽樣方法抽出人, 再從這人中抽出人發(fā)放紀(jì)念品, 求抽出人中恰有人消費(fèi)兩次的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),若存在,使成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一臺(tái)機(jī)器由于使用時(shí)間較長,生產(chǎn)的零件有一些會(huì)有缺損,按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計(jì)數(shù)據(jù)如表所示:

(1)作出散點(diǎn)圖;

(2)如果線性相關(guān),求出回歸直線方程.

(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺損的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為2,過右焦點(diǎn)和短軸一個(gè)端點(diǎn)的直線的斜率為,為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)斜率為的直線與橢圓相交于兩點(diǎn),記面積的最大值為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】葫蘆島市某工廠黨委為了研究手機(jī)對(duì)年輕職工工作和生活的影響情況做了一項(xiàng)調(diào)查:在廠內(nèi)用簡單隨機(jī)抽樣方法抽取了30名25歲至35歲的職工,對(duì)其“每十天累計(jì)看手機(jī)時(shí)間”(單位:小時(shí))進(jìn)行調(diào)查,得到莖葉圖如下.所抽取的男職工“每十天累計(jì)看手機(jī)時(shí)間”的平均值和所抽取的女生 “每十天累計(jì)看手機(jī)時(shí)間”的中位數(shù)分別是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x[0,1]時(shí),f(x)=x,則函數(shù)y=f(x)-log3|x|的零點(diǎn)個(gè)數(shù)是( )

A.多于4個(gè) B.4個(gè)

C.3個(gè) D.2個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案