【題目】數(shù)列{an}滿足:a1= ,前n項和Sn= an ,
(1)寫出a2 , a3 , a4;
(2)猜出an的表達(dá)式,并用數(shù)學(xué)歸納法證明.

【答案】
(1)

解:∵ ,

∴令n=2, ,即a1+a2=3a2.∴

令n=3,得 ,即a1+a2+a3=6a3,∴

令n=4,得 ,a1+a2+a3+a4=10a4,∴


(2)

解:猜想 ,下面用數(shù)學(xué)歸納法給出證明.

①當(dāng)n=1時, 結(jié)論成立.

②假設(shè)當(dāng)n=k時,結(jié)論成立,即 ,

則當(dāng)n=k+1時,

= ,

∴當(dāng)n=k+1時結(jié)論成立.

由①②可知,對一切n∈N+都有 成立


【解析】(1)根據(jù) ,利用遞推公式,分別令n=2,3,4.求出a1 , a2 , a3 , a4;(2)根據(jù)(1)求出的數(shù)列的前四項,從而總結(jié)出規(guī)律猜出an , 然后利用數(shù)學(xué)歸納法進(jìn)行證明即得.
【考點精析】關(guān)于本題考查的數(shù)列的通項公式,需要了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校游園活動有這樣一個游戲:甲箱子里裝有3個白球,2個黑球,乙箱子里裝有1個白球,2個黑球,這些球除了顏色外完全相同,每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎(每次游戲結(jié)束后將球放回原箱).
(1)求在1次游戲中:
①摸出3個白球的概率.
②獲獎的概率.
(2)求在3次游戲中獲獎次數(shù)X的分布列.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,3,x},B={1,x2},設(shè)全集為U=A∪B,若B∪(UB)=A,求UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進(jìn)16枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計劃一天購進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)16枝還是17枝?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,P,Q分別是BC和CD的中點.
(1)若AB=2,AD=1,∠BAD=60°,求 及cos∠BAC的余弦值;
(2)若 + ,求λ+μ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=lnx,g(x)= +mx+ (m<0),直線l與函數(shù)f(x)的圖象相切,切點的橫坐標(biāo)為1,且直線l與函數(shù)g(x)的圖象也相切.
(1)求直線l的方程及實數(shù)m的值;
(2)若h(x)=f(x+1)﹣g′(x)(其中g(shù)′(x)是g(x)的導(dǎo)函數(shù)),求函數(shù)h(x)的最大值;
(3)當(dāng)0<b<a時,求證:f(a+b)﹣f(2a)<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式 ;
(3)求函數(shù)g(x)=|logax﹣1|的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=3sin(2x+ )的圖象向右平移 個單位長度,所得圖象對應(yīng)的函數(shù)(
A.在區(qū)間( , )上單調(diào)遞減
B.在區(qū)間( )上單調(diào)遞增
C.在區(qū)間(﹣ , )上單調(diào)遞減
D.在區(qū)間(﹣ , )上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=BC=2AA1 , ∠ABC=90°,D是BC的中點.

(1)求證:A1B∥平面ADC1;
(2)求二面角C1﹣AD﹣C的余弦值;
(3)試問線段A1B1上是否存在點E,使AE與DC1成60°角?若存在,確定E點位置,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案