【題目】近年來(lái),隨著網(wǎng)絡(luò)的普及,數(shù)碼產(chǎn)品早已走進(jìn)千家萬(wàn)戶的生活,為了節(jié)約資源,促進(jìn)資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時(shí)間越長(zhǎng),回收價(jià)值越低,某二手電腦交易市場(chǎng)對(duì)2018年回收的折舊電腦交易前使用的時(shí)間進(jìn)行了統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,在如圖對(duì)時(shí)間使用的分組中,將使用時(shí)間落入各組的頻率視為概率.

(1)若在該市場(chǎng)隨機(jī)選取3個(gè)2018年成交的二手電腦,求至少有2個(gè)使用時(shí)間在上的概率;

(2)根據(jù)電腦交易市場(chǎng)往年的數(shù)據(jù),得到如圖所示的散點(diǎn)圖,其中(單位:年)表示折舊電腦的使用時(shí)間,(單位:百元)表示相應(yīng)的折舊電腦的平均交易價(jià)格.

(ⅰ)由散點(diǎn)圖判斷,可采用作為該交易市場(chǎng)折舊電腦平均交易價(jià)格與使用年限的回歸方程,若,,選用如下參考數(shù)據(jù),求關(guān)于的回歸方程.

5.5

8.5

1.9

301.4

79.75

385

(ⅱ)根據(jù)回歸方程和相關(guān)數(shù)據(jù),并用各時(shí)間組的區(qū)間中點(diǎn)值代表該組的值,估算該交易市場(chǎng)收購(gòu)1000臺(tái)折舊電腦所需的費(fèi)用

附:參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.參考數(shù)據(jù):,,,,.

【答案】(1) (2) (ⅰ) (ⅱ)

【解析】

1)由頻率分布直方圖可知一臺(tái)電腦使用時(shí)間在上的概率為:,滿足題意的有;(2)(。└鶕(jù)公式計(jì)算得到其中的進(jìn)而得到表達(dá)式;(ⅱ)根據(jù)頻率分布直方圖對(duì)成交的二手折舊電腦使用時(shí)間在,,上的頻率依次為:0.20.36,0.28,012,0.04,由上一問(wèn)的表達(dá)式得到各個(gè)區(qū)間上的相應(yīng)的估計(jì)值,進(jìn)而得到平均值.

(1)由頻率分布直方圖可知一臺(tái)電腦使用時(shí)間在上的概率為:

,

設(shè)“任選3臺(tái)電腦,至少有兩臺(tái)使用時(shí)間在”為事件,則

(2)(ⅰ)由,即,

,即,所以.

(ⅱ)根據(jù)頻率分布直方圖對(duì)成交的二手折舊電腦使用時(shí)間在,,,,

上的頻率依次為:0.2,0.36,0.28,0,12,0.04:

根據(jù)(1)中的回歸方程,

在區(qū)間上折舊電腦價(jià)格的預(yù)測(cè)值為,

在區(qū)間上折舊電腦價(jià)格的預(yù)測(cè)值為,

在區(qū)間上折舊電腦價(jià)格的預(yù)測(cè)值為

在區(qū)間上折舊電腦價(jià)格的預(yù)測(cè)值為,

在區(qū)間上折舊電腦價(jià)格的預(yù)測(cè)值為,

于是,可以預(yù)測(cè)該交易市場(chǎng)一臺(tái)折舊電腦交易的平均價(jià)格為:

(百元)

故該交易市場(chǎng)收購(gòu)1000臺(tái)折舊電腦所需的的費(fèi)用為:

(元)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】英語(yǔ)老師要求學(xué)生從星期一到星期四每天學(xué)習(xí)3個(gè)英語(yǔ)單詞:每周五對(duì)一周內(nèi)所學(xué)單詞隨機(jī)抽取若干個(gè)進(jìn)行檢測(cè)(一周所學(xué)的單詞每個(gè)被抽到的可能性相同)

(1)英語(yǔ)老師隨機(jī)抽了個(gè)單詞進(jìn)行檢測(cè),求至少有個(gè)是后兩天學(xué)習(xí)過(guò)的單詞的概率;

(2)某學(xué)生對(duì)后兩天所學(xué)過(guò)的單詞每個(gè)能默寫(xiě)對(duì)的概率為,對(duì)前兩天所學(xué)過(guò)的單詞每個(gè)能默寫(xiě)對(duì)的概率為,若老師從后三天所學(xué)單詞中各抽取一個(gè)進(jìn)行檢測(cè),求該學(xué)生能默寫(xiě)對(duì)的單詞的個(gè)數(shù)的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,四個(gè)點(diǎn),,中有3個(gè)點(diǎn)在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)原點(diǎn)的直線與橢圓交于,兩點(diǎn)(不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線軸、軸分別交于兩點(diǎn),設(shè)直線,的斜率分別為,,證明:存在常數(shù)使得,并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過(guò)人,這里的“六藝”其實(shí)源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂(lè)、射、御、書(shū)、數(shù)”.為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開(kāi)展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須分開(kāi)安排的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比.

(1)設(shè)圓求過(guò)2,0的直線關(guān)于圓的距離比的直線方程;

(2)若圓軸相切于點(diǎn)0,3)且直線= 關(guān)于圓的距離比,求此圓的的方程;

(3)是否存在點(diǎn),使過(guò)的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓的距離比始終相等?若存在,求出相應(yīng)的點(diǎn)點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下面四個(gè)命題:

①“若,則”的逆否命題為“若,則

②“”是“”的充分不必要條件

③命題存在,使得,則:任意,都有

④若為假命題,則均為假命題,其中真命題個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“水是生命之源”,但是據(jù)科學(xué)界統(tǒng)計(jì)可用淡水資源僅占地球儲(chǔ)水總量的,全世界近人口受到水荒的威脅.某市為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸):一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)設(shè)該市有60萬(wàn)居民,估計(jì)全市居民中月均用水量不低于2.5噸的人數(shù),并說(shuō)明理由;

(3)若該市政府希望使的居民每月的用水不按議價(jià)收費(fèi),估計(jì)的值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在統(tǒng)計(jì)學(xué)中,偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)時(shí),我們把某個(gè)同學(xué)的某科考試成績(jī)與該科班平均分的差叫某科偏差.某高二班主任為了了解學(xué)生的偏科情況,對(duì)學(xué)生數(shù)學(xué)偏差(單位:分)與歷史偏差(單位:分)之間的關(guān)系進(jìn)行學(xué)科偏差分析,決定從全班52位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績(jī)偏差數(shù)據(jù)如下:

學(xué)生序號(hào)

1

2

3

4

5

6

7

8

數(shù)學(xué)偏差

20

15

13

3

2

歷史偏差

1)已知之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程

2)若這次考試該班數(shù)學(xué)平均分為118分,歷史平均分為,試預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的歷史成績(jī).

附:參考公式與參考數(shù)據(jù)

,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐SABC中,OBC的中點(diǎn).

1)求證:ABC;

2)求異面直線AB所成角的余弦值;

3)在線段上是否存在一點(diǎn),使二面角的平面角的余弦值為;若存在,求的值;若不存在,試說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案