【題目】已知點(diǎn) 及圓 .
(1)設(shè)過點(diǎn) 的直線 與圓 交于 兩點(diǎn),當(dāng) 時(shí),求以線段 為直徑的圓 的方程;
(2)設(shè)直線 與圓 交于 兩點(diǎn),是否存在實(shí)數(shù) ,使得過點(diǎn) 的直線 垂直平分弦 ?若存在,求出實(shí)數(shù) 的值;若不存在,請(qǐng)說明理由.

【答案】
(1)解:由于圓 的圓心 ,半徑為 , ,而弦心距 ,
所以 ,所以 的中點(diǎn),所以所求圓的圓心坐標(biāo)為 ,半徑為 ,
故以 為直徑的圓 的方程為:
(2)解:把直線 代入圓 的方程,消去 ,整理得:
,由于直線 交圓 , 兩點(diǎn),故 ,即 ,解得 .則實(shí)數(shù) 的取值范圍是
設(shè)符合條件的實(shí)數(shù) 存在,由于 垂直平分弦 ,故圓心 必在直線 上,所以 的斜率 ,所以 ,由于 ,故不存在實(shí)數(shù) ,使得過點(diǎn) 的直線 垂直平分弦
【解析】(1)首先根據(jù)題意求出圓的半徑和圓心的坐標(biāo),再利用點(diǎn)到直線的距離公式求出弦心距由題意可知P 為 M N 的中點(diǎn),所以可求出圓的圓心坐標(biāo)和 半徑為的值,進(jìn)而得到圓的方程。(2)根據(jù)題意聯(lián)立直線和圓的方程消元整理得到關(guān)于x的方程。由題意直線和圓由兩個(gè)交點(diǎn)故該方程的Δ>0進(jìn)而求出a的取值范圍,假設(shè)a存在結(jié)合 l2 垂直平分弦 A B ,故圓心 C ( 3 , 2 ) 必在直線 l 2 上,求出l2的斜率進(jìn)而得到直線AB的斜率即a的值,該值不在a的取值范圍內(nèi)所以滿足條件的a的值是不存在的。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ (x>0)過點(diǎn)P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點(diǎn)分別為M,N,設(shè)g(t)=|MN|,若對(duì)任意的正整數(shù)n,在區(qū)間[2,n+ ]內(nèi),若存在m+1個(gè)數(shù)a1 , a2 , …am+1 , 使得不等式g(a1)+g(a2)+…g(am)<g(am+1),則m的最大值為(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為2,若將正方形ABCD沿對(duì)角線BD折疊為三棱錐 ,則在折疊過程中,不能出現(xiàn)( )
A.
B.平面 平面CBD
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市出租車的現(xiàn)行計(jì)價(jià)標(biāo)準(zhǔn)是:路程在2 km以內(nèi)(含2 km)按起步價(jià)8元收取,超過2 km后的路程按1.9 元/km收取,但超過10 km后的路程需加收50%的返空費(fèi)(即單價(jià)為1.9×(1+50%)=2.85(元/km)).
(1)將某乘客搭乘一次出租車的費(fèi)用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16 km,他準(zhǔn)備先乘一輛出租車行駛8 km后,再換乘另一輛出租車完成余下行程,請(qǐng)問:他這樣做是否比只乘一輛出租車完成全部行程更省錢?
(現(xiàn)實(shí)中要計(jì)等待時(shí)間且最終付費(fèi)取整數(shù),本題在計(jì)算時(shí)都不予考慮)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,當(dāng)x∈(0,+∞)時(shí),f(x)=log2x,若a=f(﹣3),b=f( ),c=f(2),則a,b,c的大小關(guān)系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若f(x)的圖象與直線y=kx有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是定義在 上的奇函數(shù),且 偶函數(shù) 的定義域?yàn)? ,且當(dāng) 時(shí), .若存在實(shí)數(shù) ,使得 成立,則實(shí)數(shù) 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 直徑, 所在的平面, 是圓周上不同于 的動(dòng)點(diǎn).

(1)證明:平面 平面 ;
(2)若 ,且當(dāng)二面角 的正切值為 時(shí),求直線 與平面 所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1mx8yn0l22xmy10互相平行,l1,l2之間的距離為 ,求直線l1的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案