【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1、F2,且|F1F2|=2,點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于A、B兩點(diǎn),且△AF2B的面積為,求直線l的方程.
【答案】(1);(2)y=±(x+1).
【解析】試題分析:(1)根據(jù)橢圓定義求得2a,再根據(jù)焦距得c,解得b(2)先設(shè)直線方程,根據(jù)點(diǎn)到直線距離得高,聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理與弦長公式得底,最后代入三角形面積公式得k
試題解析:(1)設(shè)橢圓的方程為 (a>b>0),由題意可得橢圓C兩焦點(diǎn)坐標(biāo)分別為F1(-1,0),F2(1,0).
∴2a=
=4.∴a=2,又c=1,∴b2=4-1=3,
故橢圓C的方程為
(2)當(dāng)直線l⊥x軸時,計算得到:A,B,S△AF2B=·|AB|·|F1F2|=×3×2=3,不符合題意.
當(dāng)直線l與x軸不垂直時,設(shè)直線l的方程為:y=k(x+1),代入
消去y得(3+4k2)x2+8k2x+4k2-12=0.
顯然Δ>0成立,設(shè)A(x1,y1),B(x2,y2),
則x1+x2=-,x1·x2=.
又|AB|·
=·= ,
點(diǎn)F2到AB的距離d==,
所以S△AF2B=|AB|·d=··==,
化簡,得17k4+k2-18=0,即(k2-1)(17k2+18)=0,解得k=±1.
所以y=±(x+1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校進(jìn)行社會實(shí)踐,對歲的人群隨機(jī)抽取 1000 人進(jìn)行了一次是否開通“微博”的調(diào)查,開通“微博”的為“時尚族”,否則稱為“非時尚族”.通過調(diào)查得到到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數(shù)中,“時尚族”人數(shù)分別占本組人數(shù)的、.
(1)求歲與歲年齡段“時尚族”的人數(shù);
(2)從歲和歲年齡段的“時尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時尚達(dá)人大賽,其中兩人作為領(lǐng)隊.求領(lǐng)隊的兩人年齡都在歲內(nèi)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為2,以D為圓心、DA為半徑的圓弧與以BC為直徑的半圓O交于點(diǎn)F,連結(jié)CF并延長交AB于點(diǎn)E.
(1)求證:AE=EB;
(2)求EFFC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在長為10千米的河流的一側(cè)有一條觀光帶,觀光帶的前一部分為曲線段,設(shè)曲線段為函數(shù)(單位:千米)的圖象,且圖象的最高點(diǎn)為;觀光帶的后一部分為線段.
(1)求函數(shù)為曲線段的函數(shù)的解析式;
(2)若計劃在河流和觀光帶之間新建一個如圖所示的矩形綠化帶,綠化帶僅由線段構(gòu)成,其中點(diǎn)在線段上.當(dāng)長為多少時,綠化帶的總長度最長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , ,
⑴ 若有零點(diǎn),求 m 的取值范圍;
⑵ 確定 m 的取值范圍,使得有兩個相異實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)及圓.
(1)若直線過點(diǎn)且被圓截得的線段長為,求的方程;
(2)求過點(diǎn)的圓的弦的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】BD是等腰直角三角形△ABC腰AC上的中線,AM⊥BD于點(diǎn)M,延長AM交BC于點(diǎn)N,AF⊥BC于點(diǎn)F,AF與BD交于點(diǎn)E.
(1)求證;△ABE≌△ACN;
(2)求證:∠ADB=∠CDN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn),過點(diǎn)且與坐標(biāo)軸不垂直的直線與橢圓交于,兩點(diǎn),當(dāng)直線經(jīng)過橢圓的一個頂點(diǎn)時其傾斜角恰好為.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),線段上是否存在點(diǎn),使得?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com