【題目】政府為了對過熱的房地產(chǎn)市場進(jìn)行調(diào)控決策,統(tǒng)計部門對城市人和農(nóng)村人進(jìn)行了買房的心理預(yù)期調(diào)研,用簡單隨機(jī)抽樣的方法抽取110人進(jìn)行統(tǒng)計,得到如圖列聯(lián)表,已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是;

(Ⅰ)分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);

(Ⅱ)請完成列聯(lián)表,并用獨立性檢驗的思想方法說明有多少的把握認(rèn)為不買房心理預(yù)期與城鄉(xiāng)有關(guān)?

參考公式:,

【答案】(Ⅰ)城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù)分別是,人;(Ⅱ)列聯(lián)表詳見解析,有的把握認(rèn)為不買房與城鄉(xiāng)有關(guān).

【解析】

(Ⅰ)通過樣本中城市人數(shù)與農(nóng)村人數(shù)之比是與表格中的數(shù)據(jù)列出等式組,可得解;

(Ⅱ)由(Ⅰ)中數(shù)據(jù)得到列聯(lián)表,根據(jù)的計算公式,及表格中的臨界值判定,即得解.

解:(Ⅰ)設(shè)城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù)分別是,人,

解得

即城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù)分別是,

(Ⅱ)設(shè)不買房心理預(yù)期與城鄉(xiāng)無關(guān),由(Ⅰ)得到如下的列聯(lián)表:

不買房

其他(買房與糾結(jié))

總計

城市人

10

20

30

農(nóng)村人

10

70

80

總計

20

90

110

對于上述不買房心理預(yù)期構(gòu)造一個隨機(jī)變量.由表中數(shù)據(jù)可得,

所以有的把握認(rèn)為不買房與城鄉(xiāng)有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;

2)若函數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形,,,,過點作平面平行于平面,平面與棱,分別相交于點,,,.

(1)求的長度;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,動點滿足直線與直線的斜率之積為,設(shè)點的軌跡為曲線.

1)求曲線的方程;

2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),則下列結(jié)論不正確的是(

A.函數(shù)在區(qū)間上單調(diào)遞增

B.函數(shù)在區(qū)間上單調(diào)遞減

C.函數(shù)的極大值是,極小值是

D.存在某一個實數(shù)的值,使得函數(shù)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中為正實數(shù).

(1)若不等式恒成立,求實數(shù)的取值范圍;

(2)當(dāng)時,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平行四邊形中,,,以對角線為折痕把折起,使點到圖2所示點的位置,使得.

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知王明比較喜愛打籃球,近來,他為了提高自己的投籃水平,制定了一個夏季訓(xùn)練計劃.班主任為了了解其訓(xùn)練效果,開始訓(xùn)練前,統(tǒng)計了王明場比賽的得分,計算出得分?jǐn)?shù)據(jù)的中位數(shù)為分,平均得分為分,得分?jǐn)?shù)據(jù)的方差為,訓(xùn)練結(jié)束后統(tǒng)計了場比賽得分成績莖葉圖如下圖:

1)求王明訓(xùn)練結(jié)束后統(tǒng)計的場比賽得分的中位數(shù),平均得分以及方差;

2)若只從訓(xùn)練前后統(tǒng)計的各場比賽得分?jǐn)?shù)據(jù)分析,訓(xùn)練計劃對王明投籃水平的提高是否有幫助?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,的中點.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案