【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥側(cè)面BCC1B1,AC=AB1.
(1)求證:平面ABC1⊥平面AB1C;
(2)若AB=BC=2,∠BCC1=60°,求二面角B﹣AC1﹣B1的余弦值.
【答案】(1)證明見(jiàn)解析(2).
【解析】
(1)設(shè)BC1∩B1C=G,連結(jié)AG,推導(dǎo)出AB⊥B1C,從而B1C⊥平面ABC1,由此能證明平面ABC1⊥平面AB1C.
(2)以G為坐標(biāo)原點(diǎn),GC1為x軸,GB1為y軸,過(guò)G作平面BCC1B1的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角B﹣AC1﹣B1的余弦值.
證明:(1)如圖,設(shè)BC1∩B1C=G,連結(jié)AG,
∵三棱柱的側(cè)面BCC1B1是平行四邊形,
∴G是B1C的中點(diǎn),
∵AC=AB1,
∴△AB1C是等腰三角形,
∴B1C=AG,
∵AB⊥側(cè)面BCC1B1,且B1C平面BCC1B1,
∴AB⊥B1C,
又∵AB∩AG=A,
∴B1C⊥平面ABC1,
又∵B1C平面AB1C,
∴平面ABC1⊥平面AB1C.
(2)由(1)知B1C⊥平面ABC1,
∴B1C⊥BC1,
以G為坐標(biāo)原點(diǎn),GC1為x軸,GB1為y軸,過(guò)G作平面BCC1B1的垂線為z軸,建立空間直角坐標(biāo)系,
由B1C⊥BC1,得到四邊形BCC1B1是菱形,
∵AB=BC=2,∠BCC1=60°,
∴GB=GC1=1,GC=B1G,
則G(0,0,0),C1(1,0,0),B1(0,,0),A(﹣1,0,2),
∴(2,0,﹣2),(1,,0),
設(shè)平面AB1C1的法向量(x,y,z),
由,取x=1,得(1,,1),
由(1)知(0,,0)是平面ABC1的法向量,
設(shè)二面角B﹣AC1﹣B1的平面角為θ,
則cosθ,
∴二面角B﹣AC1﹣B1的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱中,底面是等腰梯形,,頂點(diǎn)在底面內(nèi)的射影恰為點(diǎn).
(1)求證:平面;
(2)若直線與底面所成的角為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體ABCDE中,平面ABC,,,F是線段AD的中點(diǎn),.
(1)求證:;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)際上通常用年齡中位數(shù)指標(biāo)作為劃分國(guó)家或地區(qū)人口年齡構(gòu)成的標(biāo)準(zhǔn):年齡中位數(shù)在20歲以下為“年輕型”人口;年齡中位數(shù)在20~30歲為“成年型”人口;年齡中位數(shù)在30歲以上為“老齡型”人口.
如圖反映了我國(guó)全面放開(kāi)二孩政策對(duì)我國(guó)人口年齡中位數(shù)的影響.據(jù)此,對(duì)我國(guó)人口年齡構(gòu)成的類型做出如下判斷:①建國(guó)以來(lái)直至2000年為“成年型”人口;②從2010年至2020年為“老齡型”人口;③放開(kāi)二孩政策之后我國(guó)仍為“老齡型”人口.其中正確的是( )
A.②③B.①③C.②D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓過(guò)點(diǎn),離心率為,分別是橢圓的左、右頂點(diǎn),過(guò)右焦點(diǎn)且斜率為的直線與橢圓相交于兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記、的面積分別為、,若,求的值;
(3)記直線、的斜率分別為、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子中裝有4個(gè)大小、形狀、手感完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4.現(xiàn)每次有放回地從中任意取出一個(gè)小球,直到標(biāo)有偶數(shù)的球都取到過(guò)就停止.小明用隨機(jī)模擬的方法估計(jì)恰好在第4次停止摸球的概率,利用計(jì)算機(jī)軟件產(chǎn)生隨機(jī)數(shù),每1組中有4個(gè)數(shù)字,分別表示每次摸球的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下21組隨機(jī)數(shù):由此可以估計(jì)恰好在第4次停止摸球的概率為( )
1314 1234 2333 1224 3322 1413 3124 4321 2341 2413 1224 2143 4312
2412 1413 4331 2234 4422 3241 4331 4234
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為篩查在人群中傳染的某種病毒,現(xiàn)有兩種檢測(cè)方法:
(1)抗體檢測(cè)法:每個(gè)個(gè)體獨(dú)立檢測(cè),每一次檢測(cè)成本為80元,每個(gè)個(gè)體收取檢測(cè)費(fèi)為100元.
(2)核酸檢測(cè)法:先合并個(gè)體,其操作方法是:當(dāng)個(gè)體不超過(guò)10個(gè)時(shí),把所有個(gè)體合并在一起進(jìn)行檢測(cè).
當(dāng)個(gè)體超過(guò)10個(gè)時(shí),每10個(gè)個(gè)體為一組進(jìn)行檢測(cè).若該組檢測(cè)結(jié)果為陰性(正常),則只需檢測(cè)一次;若該組檢測(cè)結(jié)果為陽(yáng)性(不正常),則需再對(duì)每個(gè)個(gè)體按核酸檢測(cè)法重新獨(dú)立檢測(cè),共需檢測(cè)k+1次(k為該組個(gè)體數(shù),1≤k≤10,k∈N*).每一次檢測(cè)成本為160元.假設(shè)在接受檢測(cè)的個(gè)體中,每個(gè)個(gè)體的檢測(cè)結(jié)果是陽(yáng)性還是陰性相互獨(dú)立,且每個(gè)個(gè)體是陽(yáng)性結(jié)果的概率均為p(0<p<1).
(Ⅰ)現(xiàn)有100個(gè)個(gè)體采取抗體檢測(cè)法,求其中恰有一個(gè)檢測(cè)出為陽(yáng)性的概率;
(Ⅱ)因大多數(shù)人群篩查出現(xiàn)陽(yáng)性的概率很低,且政府就核酸檢測(cè)法給子檢測(cè)機(jī)構(gòu)一定的補(bǔ)貼,故檢測(cè)機(jī)構(gòu)推出組團(tuán)選擇核酸檢測(cè)優(yōu)惠政策如下:無(wú)論是檢測(cè)一次還是k+1次,每組所有個(gè)體共收費(fèi)700元(少于10個(gè)個(gè)體的組收費(fèi)金額不變).已知某企業(yè)現(xiàn)有員工107人,準(zhǔn)備進(jìn)行全員檢測(cè),擬準(zhǔn)備9000元檢測(cè)費(fèi),由于時(shí)間和設(shè)備條件的限制,采用核酸檢測(cè)法合并個(gè)體的組數(shù)不得高于參加采用抗體檢測(cè)法人數(shù),請(qǐng)?jiān)O(shè)計(jì)一個(gè)合理的的檢測(cè)安排方案;
(Ⅲ)設(shè),現(xiàn)有n(n∈N*且2≤n≤10)個(gè)個(gè)體,若出于成本考慮,僅采用一種檢測(cè)方法,試問(wèn)檢測(cè)機(jī)構(gòu)應(yīng)采用哪種檢測(cè)方法?(ln3≈1.099,ln4≈1.386,ln5≈1.609,ln6≈1.792)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在極坐系中,點(diǎn)繞極點(diǎn)順時(shí)針旋轉(zhuǎn)角得到點(diǎn).以為原點(diǎn),極軸為軸非負(fù)半軸,并取相同的單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線繞逆時(shí)針旋轉(zhuǎn)得到曲線.
(1)求曲線的直角坐標(biāo)方程;
(2)點(diǎn)的極坐標(biāo)為,直線過(guò)點(diǎn)且與曲線交于兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(為常數(shù)且)與直線有且只有一個(gè)公共點(diǎn),.
(Ⅰ)當(dāng)點(diǎn)的坐標(biāo)為時(shí),求直線的方程;
(Ⅱ)過(guò)橢圓的兩焦點(diǎn),作直線的垂線,垂足分別為,,求四邊形面積的最大值(用表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com