【題目】如圖,已知直線與曲線在第一象限和第三象限分別交于點和點,分別由點、向軸作垂線,垂足分別為、,記四邊形的面積為S.
⑴ 求出點、的坐標及實數(shù)的取值范圍;
⑵ 當取何值時,S取得最小值,并求出S的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】已知對任意x∈R,恒有f(﹣x)=﹣f(x),g(﹣x)=g(x),且當x>0時,f′(x)>0,g′(x)>0,則當x<0時有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知如表為“五點法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時的五個關鍵點的坐標(其中A>0,ω>0,|φ|<π)
x | ﹣ | ||||
f(x) | 0 | 2 | 0 | ﹣2 | 0 |
(Ⅰ)請寫出函數(shù)f(x)的最小正周期和解析式;
(Ⅱ)求函數(shù)f(x)的單調遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中, ,前項和滿足().
⑴ 求數(shù)列的通項公式;
⑵ 記,求數(shù)列的前項和;
⑶ 是否存在整數(shù)對(其中, )滿足?若存在,求出所有的滿足題意的整數(shù)對;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一艘輪船在航行中的燃料費和它的速度的立方成正比,已知在速度為每小時10公里時的燃料費是每小時6元,而其他與速度無關的費用是每小時96元,問此輪船以何種速度航行時,能使行駛每公里的費用總和最?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓O與圓P相交于A,B兩點,圓心P在圓O上,圓O的弦BC切圓P于點B,CP及其延長線交圓P于D,E兩點,過點E作EF⊥CE,交CB的延長線于點F.
(1)求證:B,P,E,F四點共圓;
(2)若CD=2,CB=2 ,求出由B,P,E,F四點所確定的圓的直徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】漳州市“網(wǎng)約車”的現(xiàn)行計價標準是:路程在2km以內(nèi)(含2km)按起步價8元收取,超過2km后的路程按1.9元/km收取,但超過10km后的路程需加收50%的返空費(即單價為1.9×(1+50%)=2.85元).
(1)將某乘客搭乘一次“網(wǎng)約車”的費用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16km,他準備先乘一輛“網(wǎng)約車”行駛8km后,再換乘另一輛“網(wǎng)約車”完成余下行程,請問:他這樣做是否比只乘一輛“網(wǎng)約車”完成全部行程更省錢?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6},則A∪(UB)=( )
A.{2,5}
B.{2,5,7,8}
C.{2,3,5,6,7,8}
D.{1,2,3,4,5,6}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com