(12分)如圖:平面四邊形ABCD中,,,沿對(duì)角線折起,使面,

(1)求證:
(2)求點(diǎn)到面的距離.
(1)略;(2)
(1)由題意先把面,轉(zhuǎn)化為,
再證即可.
(2)在(1)的基礎(chǔ)上,可得平面ABD平面BCD,然后過(guò)C作CM垂直BD于M,則CM垂直平面ABD,求CM的值即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四面體ABCD中,CB=CD,AD⊥BD,點(diǎn)E,F(xiàn)分別是AB,BD的中點(diǎn).

(Ⅰ)求證:平面EFC⊥平面BCD;
(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,
求三棱錐B-ADC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正二十邊形的對(duì)角線的條數(shù)是        ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若長(zhǎng)方體的一個(gè)頂點(diǎn)上的三條棱的長(zhǎng)分別為,從長(zhǎng)方體的一條對(duì)角線的一個(gè)
端點(diǎn)出發(fā),沿表面運(yùn)動(dòng)到另一個(gè)端點(diǎn),其最短路程是______________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)正方體的頂點(diǎn)都在球面上,它的棱長(zhǎng)為2cm,則球的表面積是(   )
A.8cm B.12cm2   
C.16cm2  D.20cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

四棱錐的底面為正方形,⊥底面,則下列結(jié)論中不正確的是(  )
 
A.
B.平面
C.與平面所成的角等于與平面所成的角
D.所成的角等于所成的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
(如右圖) 在正方體ABCD-A1B1C1D1中,

(1)證明:平面AB1D1∥平面BDC1
(2)設(shè)M為A1D1的中點(diǎn),求直線BM與平面BB1D1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法正確的是
A.直線a平行于平面M,則a平行于M內(nèi)的任意一條直線
B.直線a與平面M相交,則a不平行于M內(nèi)的任意一條直線
C.直線a不垂直于平面M,則a不垂直于M內(nèi)的任意一條直線
D.直線a不垂直于平面M,則過(guò)a的平面不垂直于M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,E為PC中點(diǎn),底 面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
  (Ⅰ)求證:BE∥平面PAD;
  (Ⅱ)求證:BC⊥平面PBD;
  (Ⅲ)求四棱錐P-ABCD的體積。
          

查看答案和解析>>

同步練習(xí)冊(cè)答案