【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間及極值;

2)討論函數(shù)的零點(diǎn)個(gè)數(shù).

【答案】1)增區(qū)間為,減區(qū)間為,極大值為,無(wú)極小值,(2)當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn);當(dāng)時(shí).函數(shù)1個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)2個(gè)零點(diǎn).

【解析】

1)求導(dǎo),求出的解,即可求出單調(diào)區(qū)間,進(jìn)而求出極值;

2)求導(dǎo),求出單調(diào)區(qū)間,確定極值,根據(jù)極值的正負(fù)以及零點(diǎn)存在性定理,對(duì)分類討論,即可求解.

由題得,函數(shù)的定義域?yàn)?/span>.

1)當(dāng)時(shí),

所以,

當(dāng)時(shí),,函數(shù)單調(diào)遞增;

當(dāng)時(shí),,函數(shù)單調(diào)遞減,

所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

所以當(dāng)時(shí),有極大值,

且極大值為,無(wú)極小值.

2)由,得.

當(dāng)時(shí),恒成立,函數(shù)單調(diào)遞增,

當(dāng)時(shí),

,所以函數(shù)有且只有一個(gè)零點(diǎn);

當(dāng)時(shí),令

當(dāng)時(shí),,函數(shù)單調(diào)遞增;

當(dāng)時(shí),,函數(shù)單調(diào)遞減,

所以的極大值為

①當(dāng),即得時(shí),

解得,此時(shí)函數(shù)沒(méi)有零點(diǎn);

②當(dāng),即時(shí),函數(shù)1個(gè)零點(diǎn);

③當(dāng),即時(shí),

.

當(dāng)時(shí),令,

上恒成立,

所以,即

所以,

故當(dāng)時(shí),.

當(dāng)時(shí),有,

所以函數(shù)2個(gè)零點(diǎn).

綜上所述:當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn);

當(dāng)時(shí).函數(shù)1個(gè)零點(diǎn);

當(dāng)時(shí),函數(shù)2個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是△ABC三個(gè)內(nèi)角ABC所對(duì)的邊,且.

1)求B;

2)若b2,且sinA,sinB,sinC成等差數(shù)列,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】作家馬伯庸小說(shuō)《長(zhǎng)安十二時(shí)辰》中,靖安司通過(guò)長(zhǎng)安城內(nèi)的望樓傳遞信息.同名改編電視劇中,望樓傳遞信息的方式有一種如下:如圖所示,在九宮格中,每個(gè)小方格可以在白色和紫色(此處以陰影代表紫色)之間變換,從而一共可以有512種不同的顏色組合,即代表512種不同的信息.現(xiàn)要求每一行,每一列上至多有一個(gè)紫色小方格(如圖所示即滿足要求).則一共可以傳遞______種信息.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元.

1)把每件產(chǎn)品的成本費(fèi)Px)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);

2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過(guò)3000件,且產(chǎn)品能全部銷售,根據(jù)市場(chǎng)調(diào)查:每件產(chǎn)品的銷售價(jià)Qx)與產(chǎn)品件數(shù)x有如下關(guān)系:,試問(wèn)生產(chǎn)多少件產(chǎn)品,總利潤(rùn)最高?(總利潤(rùn)=總銷售額-總的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,,的中點(diǎn).

(I)若上的一點(diǎn),且與直線垂直,求的值;

(Ⅱ)在(I)的條件下,設(shè)異面直線所成的角為45°,求直線與平面成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作燒開一壺水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說(shuō)明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若旋轉(zhuǎn)的弧度數(shù)與單位時(shí)間內(nèi)煤氣輸出量成正比,那么為多少時(shí)燒開一壺水最省煤氣?

附:對(duì)于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在中國(guó),“女排精神”概括的是頑強(qiáng)戰(zhàn)斗、勇敢拼搏精神.在某年度排球超級(jí)杯決賽中,中國(guó)女排與俄羅斯女排相遇,已知前四局中,戰(zhàn)成了,且在決勝局中,中國(guó)隊(duì)與俄羅斯隊(duì)?wèi)?zhàn)成了,根據(jù)中國(guó)隊(duì)與俄羅斯隊(duì)以往的較量,每個(gè)球中國(guó)隊(duì)獲勝的概率為,假定每個(gè)球中國(guó)隊(duì)是否獲勝相互獨(dú)立,則再打不超過(guò)4球,中國(guó)隊(duì)獲得比賽勝利的概率為(

(注:排球的比賽規(guī)則為53勝制,即比賽雙方中的一方先拿到3局勝利為獲勝隊(duì),其中前四局為25分制,即在一方先得到25分,且與對(duì)方的分差大于或等于2分,則先拿到25分的一方勝;若一方拿到25分后,但雙方分差小于2分,則比賽繼續(xù),直到一方領(lǐng)先2分為止;若前四局打成,則決勝局采用15分制.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)原點(diǎn)在圓的內(nèi)部,直線與圓交于、兩點(diǎn);以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求直線和圓的極坐標(biāo)方程,并求的取值范圍;

2)求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C0b2)的離心率為,F為橢圓的右焦點(diǎn),PQ為過(guò)中心O的弦.

1)求面積的最大值;

2)動(dòng)直線與橢圓交于A,B兩點(diǎn),證明:在第一象限內(nèi)存在定點(diǎn)M,使得當(dāng)直線AM與直線BM的斜率均存在時(shí),其斜率之和是與t無(wú)關(guān)的常數(shù),并求出所有滿足條件的定點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案