【題目】設(shè)函數(shù).

(1)若函數(shù)是奇函數(shù),求實(shí)數(shù)的值;

(2)若對(duì)任意的實(shí)數(shù),函數(shù)為實(shí)常數(shù))的圖象與函數(shù)的圖象總相切于一個(gè)定點(diǎn).

① 求的值;

② 對(duì)上的任意實(shí)數(shù),都有,求實(shí)數(shù)的取值范圍.

【答案】(1)0;(2)①;②

【解析】試題分析:

(1)由奇函數(shù)的 定義得到關(guān)于實(shí)數(shù)a的方程,解方程可得a=0;

(2)由導(dǎo)函數(shù)研究函數(shù)的 切線可得切點(diǎn)為,切線的方程為,則.

(3)由題意分類討論 兩種情況可得實(shí)數(shù)的取值范圍是

試題解析:

解:(1)因?yàn)楹瘮?shù)是奇函數(shù),所以恒成立,

,得恒成立,

.

(2)①,設(shè)切點(diǎn)為,

則切線的斜率為,

據(jù)題意是與無(wú)關(guān)的常數(shù),故,切點(diǎn)為, 由點(diǎn)斜式得切線的方程為,即,故.

② 當(dāng)時(shí),對(duì)任意的,都有;

當(dāng)時(shí),對(duì)任意的,都有;

對(duì)恒成立,或對(duì)恒成立.

,設(shè)函數(shù).

對(duì)恒成立,或對(duì)恒成立, ,

當(dāng)時(shí), ,,恒成立,所以上遞增, ,

上恒成立,符合題意. 當(dāng)時(shí),令,得,令,得,

上遞減,所以,

設(shè)函數(shù),

, 恒成立,

上遞增, 恒成立,

上遞增, 恒成立,

,而,不合題意.

綜上,知實(shí)數(shù)的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】斐波那契數(shù)列滿足: .若將數(shù)列的每一項(xiàng)按照下圖方法放進(jìn)格子里,每一小格子的邊長(zhǎng)為1,記前項(xiàng)所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論錯(cuò)誤的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形紙片ABCD中,AB10cm,BC8cm.將其按圖(1)的方法分割,并按圖(2)的方法焊接成扇形;按圖(3)的方法將寬BC 等分,把圖(3)中的每個(gè)小矩形按圖(1)分割并把4個(gè)小扇形焊接成一個(gè)大扇形;按圖(4)的方法將寬BC 等分,把圖(4)中的每個(gè)小矩形按圖(1)分割并把6個(gè)小扇形焊接成一個(gè)大扇形;……;依次將寬BC 等分,每個(gè)小矩形按圖(1)分割并把個(gè)小扇形焊接成一個(gè)大扇形.當(dāng)n時(shí),最后拼成的大扇形的圓心角的大小為 ( )

A. 小于 B. 等于 C. 大于 D. 大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,平面底面,,,平分,的中點(diǎn),,,,,分別為上一點(diǎn),且.

(1)若,證明:平面.

(2)過(guò)點(diǎn)作平面的垂線,垂足為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記函數(shù)f(x)=log2(2x﹣3)的定義域?yàn)榧螹,函數(shù)g(x)=的定義域?yàn)榧螻.求:
(Ⅰ)集合M,N;
(Ⅱ)集合M∩N,R(M∪N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為,過(guò)點(diǎn)

且斜率為的直線與軸交于點(diǎn), 與橢圓交于另一個(gè)點(diǎn),且點(diǎn)軸上的射影恰好為點(diǎn)

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)點(diǎn)且斜率大于的直線與橢圓交于兩點(diǎn)(),若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為、,過(guò)點(diǎn)

且斜率為的直線與軸交于點(diǎn), 與橢圓交于另一個(gè)點(diǎn),且點(diǎn)軸上的射影恰好為點(diǎn)

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)點(diǎn)且斜率大于的直線與橢圓交于兩點(diǎn)(),若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一長(zhǎng)為24米的籬笆,一面利用墻(墻最大長(zhǎng)度是10米)圍成一個(gè)矩形花圃,設(shè)該花圃寬AB為x米,面積是y平方米,

(1)求出y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;

(2)當(dāng)花圃一邊AB為多少米時(shí),花圃面積最大?并求出這個(gè)最大面積?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸與極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過(guò)點(diǎn)且傾斜角為的直線與曲線相交于兩點(diǎn).

(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案