【題目】在的展開式中,求:
(1)二項式系數的和;
(2)各項系數的和;
(3)奇數項的二項式系數和與偶數項的二項式系數和;
(4)奇數項系數和與偶數項系數和;
(5)的奇次項系數和與的偶次項系數和.
【答案】(1);(2)1;(3)奇數項的二項式系數和為,偶數項的二項式系數和為;(4)奇數項的系數和為,偶數項的系數和為;(5)的奇次項系數和為,的偶次項系數和為
【解析】
設,各項系數和為,奇數項系數和為,偶數項系數和為,奇次項系數和為,偶次項系數和為,再利用二項式定理的概念和賦值法求出相關系數和即可.
設,
各項系數和為,
奇數項系數和為,偶數項系數和為,
的奇次項系數和為,的偶次項系數和為
(1)二項式系數的和為;
(2)令,,則,
所以各項系數和為1;
(3)奇數項的二項式系數和為,
偶數項的二項式系數和為;
(4)由(2)知,①,取,,
則②,
所以奇數項的系數和,
偶數項的系數和;
(5)由(4)知,的奇次項系數和為,
的偶次項系數和為.
科目:高中數學 來源: 題型:
【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統(tǒng)計圖已知利潤為收入與支出的差,即利潤收入一支出,則下列說法正確的是
A. 利潤最高的月份是2月份,且2月份的利潤為40萬元
B. 利潤最低的月份是5月份,且5月份的利潤為10萬元
C. 收入最少的月份的利潤也最少
D. 收入最少的月份的支出也最少
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線是圓心在極軸上且經過極點的圓,射線與曲線交于點.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)已知極坐標系中兩點,,若、都在曲線上,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣mx2,g(x)=+x,m∈R,令F(x)=f(x)+g(x).
(Ⅰ)當m=時,求函數f(x)的單調遞增區(qū)間;
(Ⅱ)若關于x的不等式F(x)≤mx﹣1恒成立,求整數m的最小值;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦點坐標是,過點且垂直于長軸的直線交橢圓于兩點,且.
(1)求橢圓的標準方程;
(2)過點的直線與橢圓交于不同的兩點,問三角形內切圓面積是否存在最大值?若存在,請求出這個最大值及此時直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在處的切線與直線平行.
(1)求實數的值;
(2)若函數在上恰有兩個零點,求實數的取值范圍.
(3)記函數,設是函數的兩個極值點,若,且恒成立,求實數的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下四個命題:①命題“若,則”的逆否命題為“若,則”;②“”是“”的充分不必要條件; ③若為假命題,則均為假命題;④對于命題使得,則為,均有.其中,真命題的個數是 ( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,,,,,平面平面ABC.
(1)求證:平面PBC;
(2)求二面角P-AC-B的余弦值;
(3)求直線BC與平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過去大多數人采用儲蓄的方式將錢儲蓄起來,以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢都用來儲蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財工具也多了起來,為了研究某種理財工具的使用情況,現(xiàn)對年齡段的人員進行了調查研究,將各年齡段人數分成5組:,,,,,并整理得到頻率分布直方圖:
(1)求圖中的a值;
(2)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取8人,則三個組中,各抽取多少人;
(3)由頻率分布直方圖,求所有被調查人員的平均年齡.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com