【題目】已知點(diǎn)在橢圓上,且橢圓的離心率為.
(1)求橢圓的方程;
(2)若為橢圓的右頂點(diǎn),點(diǎn)是橢圓上不同的兩點(diǎn)(均異于)且滿(mǎn)足直線(xiàn)與斜率之積為.試判斷直線(xiàn)是否過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,說(shuō)明理由.
【答案】(1) ;(2)答案見(jiàn)解析.
【解析】試題分析:(1)由點(diǎn)在橢圓上,且橢圓的離心率為,結(jié)合性質(zhì) ,列出關(guān)于 、 、的方程組,求出 、 、,即可得橢圓的方程;(2)由題意,直線(xiàn)的斜率存在,可設(shè)直線(xiàn)的方程為, , ,聯(lián)立,得,根據(jù)韋達(dá)定理、斜率公式及直線(xiàn)與斜率之積為,可得,解得或,將以上結(jié)論代入直線(xiàn)方程即可得結(jié)果.
試題解析:(1)可知離心率,故有,
又有點(diǎn)在橢圓上,代入得,
解得, ,
故橢圓的方程為.
(2)由題意,直線(xiàn)的斜率存在,可設(shè)直線(xiàn)的方程為
, , ,
聯(lián)立得.
∴, .
∵直線(xiàn)與斜率之積為.
而點(diǎn),∴.
∴.
化簡(jiǎn)得,
∴,
化簡(jiǎn)得,解得或,
當(dāng)時(shí),直線(xiàn)的方程為直線(xiàn)與斜率之積為,過(guò)定點(diǎn).
代入判別式大于零中,解得.
當(dāng)時(shí),直線(xiàn)的方程為,過(guò)定點(diǎn),不符合題意.
故直線(xiàn)過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1: (t為參數(shù),t≠0),其中0≤α<π.在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C2:ρ=2sin θ,C3:ρ=2cos θ.
(1)求C2與C3交點(diǎn)的直角坐標(biāo);
(2)若C1與C2相交于點(diǎn)A,C1與C3相交于點(diǎn)B,求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)求的單調(diào)區(qū)間;
(3)若對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)求證:存在唯一的,使得曲線(xiàn)在點(diǎn)處的切線(xiàn)的斜率為;
(3)比較與的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形中, , , ,等腰梯形中, , , ,且平面平面.
(1)求證: 平面;
(2)若與平面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在橢圓上,過(guò)作軸的垂線(xiàn),垂足為,點(diǎn)滿(mǎn)足.(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)過(guò)的直線(xiàn)與點(diǎn)的軌跡交于兩點(diǎn),過(guò)作與垂直的直線(xiàn)與點(diǎn)的軌跡交于兩點(diǎn),求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部是等腰梯形,其中為2米,梯形的高為1米, 為3米,上部是個(gè)半圓,固定點(diǎn)為的中點(diǎn). 是由電腦控制可以上下滑動(dòng)的伸縮橫桿(橫桿面積可忽略不計(jì)),且滑動(dòng)過(guò)程中始終保持和平行.當(dāng)位于下方和上方時(shí),通風(fēng)窗的形狀均為矩形(陰影部分均不通風(fēng)).
(1)設(shè)與之間的距離為(且)米,試將通風(fēng)窗的通風(fēng)面積(平方米)表示成關(guān)于的函數(shù);
(2)當(dāng)與之間的距離為多少米時(shí),通風(fēng)窗的通風(fēng)面積取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“累積凈化量()”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化器從開(kāi)始使用到凈化效率為時(shí)對(duì)顆粒物的累積凈化量,以克表示.根據(jù)《空氣凈化器》國(guó)家標(biāo)準(zhǔn),對(duì)空氣凈化器的累計(jì)凈化量()有如下等級(jí)劃分:
累積凈化量(克) | 12以上 | |||
等級(jí) |
為了了解一批空氣凈化器(共2000臺(tái))的質(zhì)量,隨機(jī)抽取臺(tái)機(jī)器作為樣本進(jìn)行估計(jì),已知這臺(tái)機(jī)器的累積凈化量都分布在區(qū)間中.按照均勻分組,其中累積凈化量在的所有數(shù)據(jù)有: 和,并繪制了如下頻率分布直方圖:
(1)求的值及頻率分布直方圖中的值;
(2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共2000臺(tái))中等級(jí)為的空氣凈化器有多少臺(tái)?
(3)從累積凈化量在的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為, 若橢圓上一點(diǎn)滿(mǎn)足,且橢圓過(guò)點(diǎn),過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)是點(diǎn)在軸上的垂足,延長(zhǎng)交橢圓于,求證: 三點(diǎn)共線(xiàn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com