【題目】已知函數(shù)(a,bR).
(1)當(dāng)a=b=1時(shí),求的單調(diào)增區(qū)間;
(2)當(dāng)a≠0時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的值;
(3)當(dāng)a=0時(shí),若的解集為(m,n),且(m,n)中有且僅有一個(gè)整數(shù),求實(shí)數(shù)b的取值范圍.
【答案】(1)f(x)的單調(diào)增區(qū)間是和
(2)
(3)
【解析】
(1)當(dāng)a=b=1時(shí),求得函數(shù)的導(dǎo)數(shù),即可求解函數(shù)的單調(diào)區(qū)間;
(2)法一:求得,令,得或,由函數(shù)f(x)有兩個(gè)不同的零點(diǎn),求得的方程,即可求解;
法二:由得,,設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間和極值,進(jìn)而可得函數(shù)的零點(diǎn)。
(3)當(dāng)時(shí),可得,設(shè),利用導(dǎo)數(shù)得到函數(shù)的單調(diào)區(qū)間和極值,轉(zhuǎn)化為要使有解,和的解集(m,n)中只有一個(gè)整數(shù),分別列出不等式組,即可求解。
(1)當(dāng)a=b=1時(shí),,
令,解得或
所以f(x)的單調(diào)增區(qū)間是和
(2)法一:,令,得或,
因?yàn)楹瘮?shù)f(x)有兩個(gè)不同的零點(diǎn),所以或,
當(dāng)時(shí),得a=0,不合題意,舍去:
當(dāng)時(shí),代入得
即,所以.
法二:由于,所以,
由得,,
設(shè),令,得,
當(dāng)時(shí),,h(x)遞減:當(dāng)時(shí),,遞增
當(dāng)時(shí),,單調(diào)遞增
當(dāng)時(shí), 的值域?yàn)镽
故不論取何值,方程有且僅有一個(gè)根;
當(dāng)時(shí),,
所以時(shí),方程恰有一個(gè)根-2,
此時(shí)函數(shù)恰有兩個(gè)零點(diǎn)-2和1.
(3)當(dāng)時(shí),因?yàn)?/span>,所以
設(shè),則,
當(dāng)時(shí),因?yàn)?/span>,所以在上遞增,且,
所以在上,,不合題意:
當(dāng)時(shí),令,得,
所以在遞增,在遞減,
所以,
要使有解,首先要滿(mǎn)足,解得. ①
又因?yàn)?/span>,,
要使的解集(m,n)中只有一個(gè)整數(shù),則
即解得. ②
設(shè),則,
當(dāng)時(shí),,遞增:當(dāng)時(shí),,遞減
所以,所以,
所以由①和②得,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) f(x) = -ax(a > 0).
(1) 當(dāng) a = 1 時(shí),求證:對(duì)于任意 x > 0,都有 f(x) > 0 成立;
(2) 若函數(shù) y = f(x) 恰好在 x = x1 和 x = x2 兩處取得極值,求證:< ln a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)于2015年10月宣布實(shí)施普遍二孩政策,為了解戶(hù)籍、性別對(duì)生育二胎選擇傾向的影響,某地從育齡群體中隨機(jī)抽取了容量為140的調(diào)查樣本,其中城鎮(zhèn)戶(hù)籍與農(nóng)村戶(hù)籍各70人;男性60人,女性80人,繪制的不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例如圖所示,其中陰影部分表示傾向選擇生育二胎的對(duì)應(yīng)比例,則下列敘述正確的是( )
A.是否傾向選擇生育二胎與戶(hù)籍有關(guān)
B.是否傾向選擇生育二胎與性別有關(guān)
C.調(diào)查樣本里面傾向選擇生育二胎的人群中,男性人數(shù)少于女性人數(shù)
D.傾向選擇不生育二胎的人群中,農(nóng)村戶(hù)籍人數(shù)多于城鎮(zhèn)戶(hù)籍人數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某種螺帽是由一個(gè)半徑為2的半球體挖去一個(gè)正三棱錐構(gòu)成的幾何體,該正三棱錐的底面三角形內(nèi)接于半球底面大圓,頂點(diǎn)在半球面上,則被挖去的正三棱錐體積為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)參加詩(shī)詞大賽,各答3道題,每人答對(duì)每道題的概率均為,且各人是否答對(duì)每道題互不影響.
(Ⅰ)用表示甲同學(xué)答對(duì)題目的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)設(shè)為事件“甲比乙答對(duì)題目數(shù)恰好多2”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春節(jié)前后,一場(chǎng)突如其來(lái)的新冠肺炎疫情在全國(guó)蔓延.疫情就是命令,防控就是責(zé)任.在黨中央的堅(jiān)強(qiáng)領(lǐng)導(dǎo)和統(tǒng)一指揮下,全國(guó)人民眾志成城、團(tuán)結(jié)一心,掀起了一場(chǎng)堅(jiān)決打贏(yíng)疫情防控阻擊戰(zhàn)的人民戰(zhàn)爭(zhēng).下圖表展示了2月14日至29日全國(guó)新冠肺炎疫情變化情況,根據(jù)該折線(xiàn)圖,下列結(jié)論正確的是( )
A.16天中每日新增確診病例數(shù)量呈下降趨勢(shì)且19日的降幅最大
B.16天中每日新增確診病例的中位數(shù)小于新增疑似病例的中位數(shù)
C.16天中新增確診、新增疑似、新增治愈病例的極差均大于2000
D.19日至29日每日新增治愈病例數(shù)量均大于新增確診與新增疑似病例之和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線(xiàn)上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:
直徑 | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計(jì) |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.
(1)由以往統(tǒng)計(jì)數(shù)據(jù)知,設(shè)備的性能根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的概率);①;②;③,評(píng)判規(guī)則為:若同時(shí)滿(mǎn)足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿(mǎn)足其中兩個(gè),則等級(jí)為乙;若僅滿(mǎn)足其中一個(gè),則等級(jí)為丙;若全部不滿(mǎn)足,則等級(jí)為丁.為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,試判斷設(shè)備的性能等級(jí)
(2)將直徑小于等于或直徑大于的零件認(rèn)為是次品.
(i)若從設(shè)備的生產(chǎn)流水線(xiàn)上隨意抽取2件零件,求恰有一件次品的概率;
(ii)若從樣本中隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù),是實(shí)數(shù),是虛數(shù)單位.
(1)求復(fù)數(shù);
(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲,乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.
甲每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 | 4 |
對(duì)應(yīng)的天數(shù)/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 |
對(duì)應(yīng)的天數(shù)/天 | 30 | 25 | 25 | 20 |
(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤(rùn)記為(單位:元),寫(xiě)出與的函數(shù)關(guān)系式;
(2)如果將統(tǒng)計(jì)的100天中產(chǎn)生次品量的頻率作為概率,記表示甲、乙兩名工人1天中各自日利潤(rùn)不少于1950元的人數(shù)之和,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com