精英家教網 > 高中數學 > 題目詳情

【題目】已知函數fx)=(x1ex+ax2aR).

1)若ae,求函數fx)在點(1,f1))處的切線方程;

2)討論函數fx)的單調性.

【答案】13exy2e02)①當a≥0時, yfx)在(﹣,0)上為減函數,在(0,+∞)上為增函數;

②當yfx (﹣,ln(﹣2a)),(0,+∞)上為增函數,在(ln(﹣2a),0)上為減函數;

③若時,yfx)在上為單調遞增的;

④若時,yfx)在(﹣,0),(ln(﹣2a),+∞)上為增函數,在(0ln(﹣2a)) 上為減函數.

【解析】

1)由aefx)=(x1ex+ex2.再xex+2ex,分別求得,f1),用點斜式寫出切線方程.

2)根據xex+2a),分a≥0, ,四種情況分類討論.

1)∵ae,

fx)=(x1ex+ex2

xex+2ex,

3e,f1)=e

ye3ex1),

所以切線方程是3exy2e0;

2)∵xex+2a

①若a≥0時,ex+2a0

時,,

時,

所以yfx)在(﹣,0)上為減函數,在(0,+∞)上為增函數;

②若時,ln(﹣2a)<0,

xln(﹣2a)或x0,0

ln(﹣2a)<x0時,0,

yfx (﹣,ln(﹣2a)),(0,+∞)上為增函數,在(ln(﹣2a),0)上為減函數;

③若時,ln(﹣2a=0,0成立,所以yfx)在上為單調遞增的;

④若時,ln(﹣2a)>0

xln(﹣2a)或x0時,0

0xln(﹣2a)時,0

yfx)在(﹣,0),(ln(﹣2a),+∞)上為增函數,在(0ln(﹣2a)) 上為減函數.

綜上:①若a≥0時, yfx)在(﹣0)上為減函數,在(0+∞)上為增函數;

②若時, yfx (﹣,ln(﹣2a)),(0,+∞)上為增函數,在(ln(﹣2a),0)上為減函數;

③若時, yfx)在上為單調遞增的;

④若時,yfx)在(﹣,0),(ln(﹣2a),+∞)上為增函數,在(0,ln(﹣2a)) 上為減函數.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖①,利用斜二側畫法得到水平放置的的直觀圖,其中軸,軸.若,設的面積為,的面積為,記,執(zhí)行如圖②的框圖,則輸出的值

A. 12B. 10C. 9D. 6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數fx)給出定義:設fx)是函數yfx)的導數,fx)是函數fx)的導數,若方程fx)=0有實數解x0,則稱點(x0,fx0))為函數yfx)的拐點.某同學經過探究發(fā)現:任何一個三次函數fx)=ax3+bx2+cx+da≠0)都有拐點;任何一個三次函數都有對稱中心,且拐點就是對稱中心.給定函數,請你根據上面探究結果,計算f+f+f+……+f)=_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在長方體中,底面是邊長為的正方形,的中點,的中點.

1)求證:平面

2)若,求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fxgx1

1)若fa)=2,求實數a的值;

2)判斷fx)的單調性,并證明;

3)設函數hx)=gxx0),若h2t+mht+40對任意的正實數t恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點,是棱上的點,,

1求證:平面平面;

2,求二面角的大小

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐PABCD中,底面ABCD是邊長為4的正方形,△PAD是一個正三角形,若平面PAD⊥平面ABCD,則該四棱錐的外接球的表面積為_____.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1所示,在直角梯形中,,,,,點恰好在線段的垂直平分線上,以為折痕將折起,使點到達點的位置,且平面底面,如圖2所示,是線段的中點.

1)證明:平面

2)若三棱錐的體積為1,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是我國古代數學成就的杰出代表.其中《方田》章給出計算弧田面積的經驗公式為:.弧田(如圖1陰影部分)由圓弧和其所對弦圍成,弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.類比弧田面積公式得到球缺(如圖 2)近似體積公式:圓面積.球缺是指一個球被平面截下的一部分,廈門嘉庚體育館近似球缺結構(如圖3),若該體育館占地面積約為18000,建筑容積約為340000,估計體育館建筑高度(單位:)所在區(qū)間為( )

參考數據: ,,

.

A. B. C. D.

查看答案和解析>>

同步練習冊答案