【題目】假設(shè)小明家訂了一份報紙,送報人可能在早上6:30﹣7:30之間把報紙送到小明家,小明父親離開家去工作的時間在早上7:00﹣8:00之間,問小明父親在離開家前能得到報紙(稱為事件A)的概率是多少?
【答案】解:設(shè)送報人到達的時間為X,小明父親離家去工作的時間為Y, 以橫坐標表示報紙送到時間,以縱坐標表示父親離家時間,建立平面直角坐標系,父親在離開家前能得到報紙的事件構(gòu)成區(qū)域是下圖:
由于隨機試驗落在方形區(qū)域內(nèi)任何一點是等可能的,所以符合幾何概型的條件.
根據(jù)題意,只要點落到陰影部分,就表示父親在離開家前能得到報紙,即事件A發(fā)生,
所以P(A)= = .
【解析】根據(jù)題意,設(shè)送報人到達的時間為X,小明父親離家去工作的時間為Y;則(X,Y)可以看成平面中的點,分析可得由試驗的全部結(jié)果所構(gòu)成的區(qū)域并求出其面積,同理可得事件A所構(gòu)成的區(qū)域及其面積,由幾何概型公式,計算可得答案.
【考點精析】關(guān)于本題考查的幾何概型,需要了解幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知點A的極坐標為( , ),直線l的極坐標方程為ρcos(θ﹣ )=a,且點A在直線l上.
(1)求a的值及直線l的直角坐標方程;
(2)若圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖程序框圖,并根據(jù)該程序框圖回答以下問題:
(1)若輸入的x分別為2,4,求輸出y的值;
(2)說明該程序框圖的功能.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρ=2.
(1)若點M的直角坐標為(2, ),直線l與曲線C1交于A、B兩點,求|MA|+|MB|的值.
(2)設(shè)曲線C1經(jīng)過伸縮變換 得到曲線C2 , 求曲線C2的內(nèi)接矩形周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,該幾何體是由一個直三棱柱和一個正四棱錐組合而成, , .
(Ⅰ)證明:平面平面;
(Ⅱ)求正四棱錐的高,使得二面角的余弦值是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若a,b∈[﹣1,1],a+b≠0時,有 >0成立. (Ⅰ)判斷f(x)在[﹣1,1]上的單調(diào)性,并證明;
(Ⅱ)解不等式:f(2x﹣1)<f(1﹣3x);
(Ⅲ)若f(x)≤m2﹣2am+1對所有的a∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC,F(xiàn)為CE上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個命題與正整數(shù)有關(guān),若當(dāng)n=k 時該命題成立,那么可推得當(dāng) n=k+1 時該命題也成立,現(xiàn)已知當(dāng) n=4 時該命題不成立,那么可推得( )
A.當(dāng) n=5 時,該命題不成立
B.當(dāng) n=5 時,該命題成立
C.當(dāng) n=3 時,該命題成立
D.當(dāng) n=3 時,該命題不成立
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com