【題目】解不等式: ≥2.

【答案】解:不等式移項得: ﹣2≥0, 變形得: ≤0,
即2(x﹣ )(x﹣6)(x﹣3)(x﹣5)≤0,且x≠3,x≠5,
根據(jù)題意畫出圖形,如圖所示:

根據(jù)圖形得: ≤x<3或5<x≤6,
則原不等式的解集為[ ,3)∪(5,6].
【解析】把不等式的右邊移項到左邊,通分后把分子分母都分解因式,得到的式子小于等于0,然后根據(jù)題意畫出圖形,在數(shù)軸上即可得到原不等式的解集.
【考點精析】根據(jù)題目的已知條件,利用解一元二次不等式的相關知識可以得到問題的答案,需要掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是梯形, , , ,側(cè)面底面.

(1)求證:平面平面

(2)若,且三棱錐的體積為,求側(cè)面的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系 為坐標原點,曲線 為參數(shù)),在以平面直角坐標系的原點為極點, 軸的正半軸為極軸,有相同單位長度的極坐標系中,直線 .

(Ⅰ)求曲線的普通方程和直線的直角坐標方程;

()求與直線平行且與曲線相切的直線的直角坐標方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函數(shù)f(x)的解析式;
(2)當x∈ 時,f(x)的最小值是﹣4,求此時函數(shù)f(x)的最大值,并求出相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解甲、乙兩個工廠生產(chǎn)的輪胎的寬度是否達標,分別從兩廠隨機各選取了10個輪胎,將每個輪胎的寬度(單位:mm)記錄下來并繪制出如下的折線圖:

(1)分別計算甲、乙兩廠提供的10個輪胎寬度的平均值;

(2)輪胎的寬度在內(nèi),則稱這個輪胎是標準輪胎.試比較甲、乙兩廠分別提供的10個輪胎中所有標準輪胎寬度的方差的大小,根據(jù)兩廠的標準輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】原命題:“ 為兩個實數(shù),若,則, 中至少有一個不小于1”,下列說法錯誤的是( )

A. 逆命題為:若 中至少有一個不小于1,則,為假命題

B. 否命題為:若,則 都小于1,為假命題

C. 逆否命題為:若 都小于1,則,為真命題

D. ”是“ 中至少有一個不小于1”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為調(diào)查高一新生上學路程所需要的時間(單位:分鐘),從高一年級新生中隨機抽取100名新生按上學所需時間分組:第1組(0,10],第2組(10,20],第3組(20,30],第4組(30,40],第5組(40,50],得到的頻率分布直方圖如圖所示.

(1)根據(jù)圖中數(shù)據(jù)求a的值;
(2)若從第3,4,5組中用分層抽樣的方法抽取6名新生參與交通安全問卷調(diào)查,應從第3,4,5組各抽取多少名新生?
(3)在(2)的條件下,該校決定從這6名新生中隨機抽取2名新生參加交通安全宣傳活動,求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,B=60°,AC= ,則AB+2BC的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價x(元)

8

8.2

8.4

8.6

8.8

9

銷量y(件)

90

84

83

80

75

68


(1)求回歸直線方程 = x+ ,其中 =﹣20, =
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入﹣成本)

查看答案和解析>>

同步練習冊答案