【題目】有人收集了七月份的日平均氣溫(攝氏度)與某次冷飲店日銷售額(百元)的有關數(shù)據(jù),為分析其關系,該店做了五次統(tǒng)計,所得數(shù)據(jù)如下:

日平均氣溫(攝氏度)

31

32

33

34

35

日銷售額(百元)

5

6

7

8

10

由資料可知,關于的線性回歸方程是,給出下列說法:

②日銷售額(百元)與日平均氣溫(攝氏度)成正相關;

③當日平均氣溫為攝氏度時,日銷售額一定為百元.

其中正確說法的序號是______.

【答案】①②

【解析】

計算后可判斷①,由統(tǒng)計表可判斷②,由線性回歸方程的概念可判斷③,即可得解.

由統(tǒng)計表可得,

,故①正確;

由統(tǒng)計表可得日銷售額(百元)與日平均氣溫(攝氏度)成正相關,故②正確;

由線性回歸方程的概念可得當日平均氣溫為攝氏度時,日銷售額的預計值為,故③錯誤.

故答案為:①②.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過點作直線,分別與橢圓交于,,點,若的周長為8.

1)求橢圓的方程;

2)求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,平面,中點,下列說法中

1;

2)記二面角的平面角分別為;

3)記的面積分別為;

4,

正確說法的個數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,且,

(1)證明:平面

(2)在線段上,是否存在一點,使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為配合“2019雙十二促銷活動,某公司的四個商品派送點如圖環(huán)形分布,并且公司給四個派送點準備某種商品各50.根據(jù)平臺數(shù)據(jù)中心統(tǒng)計發(fā)現(xiàn),需要將發(fā)送給四個派送點的商品數(shù)調(diào)整為40,4554,61,但調(diào)整只能在相鄰派送點進行,每次調(diào)動可以調(diào)整1件商品.為完成調(diào)整,則(

A.最少需要16次調(diào)動,有2種可行方案

B.最少需要15次調(diào)動,有1種可行方案

C.最少需要16次調(diào)動,有1種可行方案

D.最少需要15次調(diào)動,有2種可行方案

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線)上的兩個動點,焦點為F.線段的中點為,且點到拋物線的焦點F的距離之和為8

1)求拋物線的標準方程;

2)若線段的垂直平分線與x軸交于點C,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】目前,中國有三分之二的城市面臨垃圾圍城的窘境. 我國的垃圾處理多采用填埋的方式,占用上萬畝土地,并且嚴重污染環(huán)境. 垃圾分類把不易降解的物質(zhì)分出來,減輕了土地的嚴重侵蝕,減少了土地流失. 202051日起,北京市將實行生活垃圾分類,分類標準為廚余垃圾、可回收物、有害垃圾和其它垃圾四類 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既環(huán)保,又節(jié)約資源. 如:回收利用1噸廢紙可再造出0.8噸好紙,可以挽救17棵大樹,少用純堿240千克,降低造紙的污染排放75%,節(jié)省造紙能源消耗40%~50.

現(xiàn)調(diào)查了北京市5個小區(qū)12月份的生活垃圾投放情況,其中可回收物中廢紙和塑料品的投放量如下表:

小區(qū)

小區(qū)

小區(qū)

小區(qū)

小區(qū)

廢紙投放量(噸)

5

5.1

5.2

4.8

4.9

塑料品投放量(噸)

3.5

3.6

3.7

3.4

3.3

(Ⅰ)從5個小區(qū)中任取1個小區(qū),求該小區(qū)12月份的可回收物中,廢紙投放量超過5噸且塑料品投放量超過3.5噸的概率;

(Ⅱ)從5個小區(qū)中任取2個小區(qū),記12月份投放的廢紙可再造好紙超過4噸的小區(qū)個數(shù),求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù), ,其中R …為自然對數(shù)的底數(shù)

)當時, 恒成立,求的取值范圍;

)求證: (參考數(shù)據(jù): )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,為等邊三角形,的中點.

(1)證明:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案