【題目】如圖,要測量山頂上的電視塔FG的高度,已知山的西面有一棟樓AC(該樓的高度低于山的高度).試設(shè)計在樓AC上測山頂電視塔高度的測量、計算方案.

【答案】詳見解析

【解析】

設(shè)在樓頂C看塔頂、塔底的仰角分別是α,β,從樓頂下B點看塔底的仰角為γ,測出BC=h.BCF中,利用正弦定理求出,在RtBEF中,求出,在RtCGM中,求出,最后在RtCFM中, 求出,從而可求出.

解:設(shè)在樓頂C看塔頂、塔底的仰角分別是α,β,從樓頂下B點看塔底的仰角為γ,測出BC=h.如圖,

BCF中,BC=h,,.

由正弦定理,得,即

所以.

RtBEF中,有.

RtCGM中,CM=BE,∠GCM=α,則.

RtCFM中,CM=BE,∠FCM=β,則.

從而電視塔的高.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下表為函數(shù)部分自変量取值及其對應(yīng)函數(shù)值,為了便于研究,相關(guān)函數(shù)值取非整數(shù)值時,取值精確到0.01.

0.61

-0.59

-0.56

-0.35

0

0.26

0.42

1.57

3.27

0.07

0.02

-0.03

-0.22

0

0.21

0.20

-10.04

-101.63

據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質(zhì);

(1)判斷函數(shù)的奇偶性,并證明;

(2)判斷函數(shù)在區(qū)間[0.55,0.6]上是否存在零點,并說明理由;

(3)判斷的正負(fù),并證明函數(shù)上是單調(diào)遞減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,討論函數(shù)的單調(diào)性;

2)當(dāng)時,對于任意正實數(shù),不等式恒成立,試判斷實數(shù)的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角,的對邊分別是,且.

1)求角的大小;

2)已知等差數(shù)列的公差不為零,若,且,,成等比數(shù)列,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點測量到遠(yuǎn)處有一物體在做勻速直線運動,開始時該物體位于點,一分鐘后,其位置在點,且,再過二分鐘后,該物體位于點,且,則的值等于 ( )

A.B.C.D.以上均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,海中一小島C周圍nmile內(nèi)有暗礁,貨輪由西向東航行至A處測得小島C位于北偏東75°方向上,航行8nmile后,于B處測得小島C在北偏東60°方向上.

1)如果這艘貨輪不改變航向繼續(xù)前進(jìn),有沒有觸礁的危險?請說明理由.

2)如果有觸礁的危險,這艘貨輪在B處改變航向為南偏東α°α>0)方向航行,順利繞過暗礁,求a的最大值.(附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照我國《機動車交通事故責(zé)任強制保險條例》規(guī)定,交強險是車主必須為機動車購買的險種,若普通7座以下私家車投保交強險第一年的費用(基準(zhǔn)保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是保費浮動機制,保費與上一、二、三個年度車輛發(fā)生道路交通事故的情況相關(guān)聯(lián),發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:

某機構(gòu)為了研究某一品牌普通7座以下私家車的投保情況,隨機抽取了80輛車齡已滿三年的該品牌同型號私家車在下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)某家庭有一輛該品牌車且車齡剛滿三年,記為該車在第四年續(xù)保時的費用,求的分布列;

(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基準(zhǔn)保費的車輛記為事故車.

①若該銷售商購進(jìn)三輛車(車齡已滿三年)該品牌二手車,求這三輛車中至少有2輛事故車的概率;

②假設(shè)購進(jìn)一輛事故車虧損4000元,一輛非事故車盈利8000元.若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求其獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù))在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點.若直線與曲線相交于不同的兩點,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種出口產(chǎn)品的關(guān)稅稅率為,市場價格(單位:千元)與市場供應(yīng)量(單位:萬件)之間近似滿足關(guān)系式:,其中、均為常數(shù).當(dāng)關(guān)稅稅率時,若市場價格為5千元,則市場供應(yīng)量約為1萬件;若市場價格為7千元,則市場供應(yīng)量約為2萬件.

(1)試確定的值;

(2)市場需求量(單位:萬件)與市場價格近似滿足關(guān)系式:,當(dāng)時,市場價格稱為市場平衡價格,當(dāng)市場平衡價格不超過4千元時,試確定關(guān)稅稅率的最大值.

查看答案和解析>>

同步練習(xí)冊答案