【題目】四棱錐中,平面,底面為直角梯形,,,MPA上一點,且,

(1)證明:PC//平面MBD

(2)若,四棱錐的體積為,求直線AB與平面MBD所成角的正弦值.

【答案】(1)見證明;(2)

【解析】

(1)連結(jié)ACBDN點,連結(jié)MN,可證,從而可證得.

(2)不妨設(shè),根據(jù)四棱錐的體積為,解得; 利用等體積法,

設(shè)點到平面的距離為,,解得, 可得結(jié)果.

(1)連結(jié)ACBDN點,連結(jié)MN,則

, ,,

,

(2)不妨設(shè),因為PA=AD=3,四棱錐的體積為

所以,解得;

設(shè)點到平面的距離為

利用體積相等,,在中,

,

利用余弦定理可求得,所以,

所以三角形的面積,

代入中得:,解得,

又因為,所以直線AB與平面MBD所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).

(1)若m=2,且p∧q為真,求實數(shù)x的取值范圍;

(2)若p是q的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測試分為:指標(biāo)不小于90為一等品,不小于80小于90為二等品,小于80為三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品虧損10元,現(xiàn)對學(xué)徒工甲和正式工人乙生產(chǎn)的產(chǎn)品各100件的檢測結(jié)果統(tǒng)計如下:

測試指標(biāo)

5

15

35

35

7

3

3

7

20

40

20

10

根據(jù)上表統(tǒng)計得到甲、乙生產(chǎn)產(chǎn)品等級的頻率分別估計為他們生產(chǎn)產(chǎn)品等級的概率.

1)求出乙生產(chǎn)三等品的概率;

2)求出甲生產(chǎn)一件產(chǎn)品,盈利不小于30元的概率;

3)若甲、乙一天生產(chǎn)產(chǎn)品分別為40件和30件,估計甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A市積極倡導(dǎo)學(xué)生參與綠色環(huán)保活動,其中代號為環(huán)保衛(wèi)士——12369的綠色環(huán)保活動小組對2014年1月——2014年12月(一年)內(nèi)空氣質(zhì)量指數(shù)進(jìn)行監(jiān)測,下表是在這一年隨機(jī)抽取的100天的統(tǒng)計結(jié)果:

指數(shù)API

[0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

>300

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中重度污染

重度污染

天數(shù)

4

13

18

30

9

11

15

(1)若A市某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失P(單位:元)與空氣質(zhì)量指數(shù)(記為t)的關(guān)系

為:,在這一年內(nèi)隨機(jī)抽取一天,估計該天經(jīng)濟(jì)損失元的概率;

(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季節(jié),其中有8天為重度污染,完成列聯(lián)表,并判斷是

否有的把握認(rèn)為A市本年度空氣重度污染與供暖有關(guān)?

非重度污染

重度污染

合計

供暖季

非供暖季節(jié)

合計

100

下面臨界值表供參考

015

010

005

0025

0010

0005

0001

2072

2706

3841

p>5024

6635

7879

10828

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若如圖所示的程序框圖輸出的S是126,則n條件為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】非空集合關(guān)于運算滿足:①對任意,都有;②存在使得對于一切都有,則稱是關(guān)于運算的融洽集,現(xiàn)有下列集合與運算:①是非負(fù)整數(shù)集,:實數(shù)的加法;②是偶數(shù)集,:實數(shù)的乘法;③是所有二次三項式構(gòu)成的集合,:多項式的乘法; ④,:實數(shù)的乘法;其中屬于融洽集的是________(請?zhí)顚懢幪枺?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟(jì)的發(fā)展,居民收入逐年增長.某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:

年份

2014

2015

2016

2017

2018

年份代號

1

2

3

4

5

人均純收入

5

6

7

8

10

1)求關(guān)于的線性回歸方程;

2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測2020年該地區(qū)農(nóng)村居民家庭人均純收入約為多少千元?

附:回歸直線的斜率和截距的最小二乘估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解下列不等式.

1)若方程有兩個實根,求不等式的解集;

2;

3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,分別為線段上的點,且,.

(1)證明:;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案