【題目】圖1是直角梯形,,,,,,.以為折痕將折起,使點到達(dá)的位置,且,如圖2.
(1)證明:平面平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)做輔助線,先根據(jù)線線垂直證明面,進(jìn)而可證平面平面;
(2)建立平面直角坐標(biāo)系,求出平面的法向量,利用法向量法可求直線與平面所成角的正弦值.
(1)證明:在圖1中,連結(jié),由已知得
∵且,
∴四邊形為菱形,
連結(jié)交于點,
∴,
又∵在中,,
∴,
在圖2中,,
∵,∴,
由題意知,
∴面,又平面,
∴平面平面;
(2)如圖,以為坐標(biāo)原點,,分別為軸,方向為軸正方向建立空間直角坐標(biāo)系.由已知得各點坐標(biāo)為
,
所以,,,
設(shè)平面的法向量為,則,
所以,即,令,解得,
所以,
所以,
記直線與平面所成角為,
則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于獨立性檢驗的敘述
①常用等高條形圖表示列聯(lián)表數(shù)據(jù)的頻率特征;
②獨立性檢驗依據(jù)小概率原理;
③獨立性檢驗的結(jié)果是完全正確的;
④對分類變量與的隨機變量的觀測值來說,越小,與有關(guān)系的把握程度就越大.
其中敘述正確的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,是非空集合的兩個不同子集.
(1)若,且是的子集,求所有有序集合對的個數(shù);
(2)若,且是的子集,求所有有序集合對的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,,,,是的中點,是與的交點.將沿折起到的位置,如圖.
(Ⅰ)證明:平面;
(Ⅱ)若平面平面,求平面與平面夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某屆奧運會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三年級一班至六班進(jìn)行了“本屆奧運會中國隊表現(xiàn)”的滿意度調(diào)查結(jié)果只有“滿意”和“不滿意”兩種,從被調(diào)查的學(xué)生中隨機抽取了50人,具體的調(diào)查結(jié)果如表:
班號 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
頻數(shù) | 5 | 9 | 11 | 9 | 7 | 9 |
滿意人數(shù) | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年級全體學(xué)生中隨機抽取一名學(xué)生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;
(2)若從一班至二班的調(diào)查對象中隨機選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對“本屆奧運會中國隊表現(xiàn)”不滿意的人數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點,平面,,為線段上一點(不與端點重合).
(1)若,
(。┣笞C:PC∥平面;
(ⅱ)求平面與平面所成的銳二面角的余弦值;
(2)否存在實數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知asinB=bsin(A).
(1)求A;
(2)D是線段BC上的點,若AD=BD=2,CD=3,求△ADC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com