【題目】已知函數(shù) ,不等式 的解集為[-1,5]
(1)求實數(shù) 的值;
(2)若 恒成立,求實數(shù) 的取值范圍。
【答案】
(1)
解:(1)由f(x)≤3,得|x-a|≤3,
∴a-3≤x≤a+3,又f(x)≤3的解集為[-1,5].
∴ ,解得:a=2;
(2)
∵f(x)+f(x+5)=|x-2|+|x+3|≥|(x-2)-(x+3)|=5.
又f(x)+f(x+5)≥m對一切實數(shù)x恒成立,
∴m≤5.
【解析】(1)由f(x)≤3求解絕對值的不等式,結(jié)合不等式f(x)≤3的解集為[-1,5]列式求得實數(shù)a的值;(2)利用絕對值的不等式放縮得到f(x)+f(x+5)≥5,結(jié)合f(x)+f(x+5)≥m對一切實數(shù)x恒成立,即可求得實數(shù)m的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+ )(ω>0)的周期為π,則下列選項正確的是( )
A.函數(shù)f(x)的圖象關(guān)于點( ,0)對稱
B.函數(shù)f(x)的圖象關(guān)于點(﹣ ,0)對稱
C.函數(shù)f(x)的圖象關(guān)于直線x= 對稱
D.函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1、F2 , 由橢圓短軸的一個端點與兩個焦點構(gòu)成一個等邊三角形.它的面積為4 .
(1)求橢圓C的方程;
(2)已知動點B(m,n)(mn≠0)在橢圓上,點A(0,2 ),直線AB交x軸于點D,點B′為點B關(guān)于x軸的對稱點,直線AB′交x軸于點E,若在y軸上存在點G(0,t),使得∠OGD=∠OEG,求點G的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了解各!秶鴮W(xué)》課程的教學(xué)效果,組織全市各學(xué)校高二年級全體學(xué)生參加了國學(xué)知識水平測試,測試成績從高到低依次分為A、B、C、D四個等級,隨機(jī)調(diào)閱了甲、乙兩所學(xué)校各60名學(xué)生的成績,得到如圖所示分布圖:
(Ⅰ)試確定圖中實數(shù)a與b的值;
(Ⅱ)規(guī)定等級D為“不合格”,其他等級為“合格”,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若從甲、乙兩!昂细瘛钡膶W(xué)生中各選1名學(xué)生,求甲校學(xué)生成績高于乙校學(xué)生成績的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列 中,
(1)求數(shù)列 的通項公式;
(2)設(shè)數(shù)列 是首項為1,公比為 的等比數(shù)列,求 的前 項和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且 .
(1)求sinB的值;
(2)若a=4,求△ABC的面積S的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P(a,b)(ab≠0)是圓x2+y2=r2內(nèi)的一點,直線m是以P為中點的弦所在直線,直線l的方程為ax+by=r2 , 那么( )
A.m∥l,且l與圓相交
B.m⊥l,且l與圓相切
C.m∥l,且l與圓相離
D.m⊥l,且l與圓相離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣t|(t∈R)
(1)t=2時,求不等式f(x)>2的解集;
(2)若對于任意的t∈[1,2],x∈[﹣1,3],f(x)≥a+x恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知從“神十”飛船帶回的某種植物種子每粒成功發(fā)芽的概率都為 ,某植物研究所進(jìn)行該種子的發(fā)芽實驗,每次實驗種一粒種子,每次實驗結(jié)果相互獨立,假定某次實驗種子發(fā)芽則稱該次實驗是成功的,如果種子沒有發(fā)芽,則稱該次實驗是失敗的.若該研究所共進(jìn)行四次實驗,設(shè)ξ表示四次實驗結(jié)束時實驗成功的次數(shù)與失敗的次數(shù)之差的絕對值. (Ⅰ)求隨機(jī)變量ξ的分布列及ξ的數(shù)學(xué)期望E(ξ);
(Ⅱ)記“不等式ξx2﹣ξx+1>0的解集是實數(shù)集R”為事件A,求事件A發(fā)生的概率P(A).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com