【題目】已知函數(shù),.
(1)討論在區(qū)間上的單調(diào)性;
(2)若時,,求整數(shù)的最小值.
【答案】(1)詳見解析(2)
【解析】
(1)分別在、和三種情況下,根據(jù)導(dǎo)函數(shù)的正負得到原函數(shù)的單調(diào)區(qū)間;
(2)將問題轉(zhuǎn)化為在上恒成立,則,結(jié)合零點存在定理可確定的最大值為,,利用導(dǎo)數(shù)可求得其值域,進而得到整數(shù)的最小值.
(1)由題意得:,
令,則,
當(dāng),即時,,,在上單調(diào)遞增;
當(dāng),即或時,
令,解得:,,
當(dāng)時,,
當(dāng)時,;當(dāng)時,,
在上單調(diào)遞減,在上單調(diào)遞增;
當(dāng)時,,
當(dāng)時,;當(dāng)和時,,
在,上單調(diào)遞增,在上單調(diào)遞減;
綜上所述:當(dāng)時,在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.
(2)由得:在上恒成立,
令,則,
令,則,,
,在區(qū)間上存在零點,
設(shè)零點為,則,
當(dāng)時,;當(dāng)時,,
在上單調(diào)遞增,在上單調(diào)遞減,
,,
設(shè),則,
上單調(diào)遞增,,即,
整數(shù)的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天津市某學(xué)校組織教師進行“學(xué)習(xí)強國”知識競賽,規(guī)則為:每位參賽教師都要回答3個問題,且對這三個問題回答正確與否相互之間互不影響,若每答對1個問題,得1分;答錯,得0分,最后按照得分多少排出名次,并分一、二、三等獎分別給予獎勵.已知對給出的3個問題,教師甲答對的概率分別為,,p.若教師甲恰好答對3個問題的概率是,則________;在前述條件下,設(shè)隨機變量X表示教師甲答對題目的個數(shù),則X的數(shù)學(xué)期望為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若a=5sin(B),c=5且O為△ABC的外心,G為△ABC的重心,則OG的最小值為( )
A.1B.C.1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓與軸相切于點,過點,分別作動圓異于軸的兩切線,設(shè)兩切線相交于,點的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過的直線與曲線相交于不同兩點,若曲線上存在點,使得成立,求實數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,橢圓以的長軸為短軸,且兩個橢圓的離心率相同,設(shè)O為坐標原點,點A、B分別在橢圓、上,若,則直線AB的斜率k為( ).
A.1B.-1C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果對于函數(shù)定義域內(nèi)任意的兩個自變量的值,,當(dāng)時,都有,且存在兩個不相等的自變量值,,使得,就稱為定義域上的“不嚴格的增函數(shù)”.下列所給的四個函數(shù)中為“不嚴格增函數(shù)”的是( )
A.;B.;
C.;D..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)若曲線在點處的切線方程為,其中是自然對數(shù)的底數(shù),求的值:
(Ⅱ)若函數(shù)是內(nèi)的減函數(shù),求正數(shù)的取值范圍;
(Ⅲ)若方程無實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面,,,,.
(1)當(dāng)變化時,點到平面的距離是否為定值?若是,請求出該定值;若不是,請說明理由;
(2)當(dāng)直線與平面所成的角為45°時,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com