【題目】已知函數(shù),.

1)討論在區(qū)間上的單調(diào)性;

2)若時,,求整數(shù)的最小值.

【答案】1)詳見解析(2

【解析】

1)分別在三種情況下,根據(jù)導(dǎo)函數(shù)的正負得到原函數(shù)的單調(diào)區(qū)間;

(2)將問題轉(zhuǎn)化為上恒成立,則,結(jié)合零點存在定理可確定的最大值為,利用導(dǎo)數(shù)可求得其值域,進而得到整數(shù)的最小值.

1)由題意得:,

,則,

當(dāng),即時,,上單調(diào)遞增;

當(dāng),即時,

,解得:,

當(dāng)時,,

當(dāng)時,;當(dāng)時,

上單調(diào)遞減,在上單調(diào)遞增;

當(dāng)時,,

當(dāng)時,;當(dāng)時,,

,上單調(diào)遞增,在上單調(diào)遞減;

綜上所述:當(dāng)時,,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,上單調(diào)遞增;當(dāng)時,上單調(diào)遞減,在上單調(diào)遞增.

2)由得:上恒成立,

,則,

,則,,

,在區(qū)間上存在零點,

設(shè)零點為,則,

當(dāng)時,;當(dāng)時,,

上單調(diào)遞增,在上單調(diào)遞減,

,

設(shè),則

上單調(diào)遞增,,即,

整數(shù)的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天津市某學(xué)校組織教師進行學(xué)習(xí)強國知識競賽,規(guī)則為:每位參賽教師都要回答3個問題,且對這三個問題回答正確與否相互之間互不影響,若每答對1個問題,得1分;答錯,得0分,最后按照得分多少排出名次,并分一、二、三等獎分別給予獎勵.已知對給出的3個問題,教師甲答對的概率分別為,,p.若教師甲恰好答對3個問題的概率是,則________;在前述條件下,設(shè)隨機變量X表示教師甲答對題目的個數(shù),則X的數(shù)學(xué)期望為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若a=5sinB),c=5O為△ABC的外心,G為△ABC的重心,則OG的最小值為( )

A.1B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與軸相切于點,過點,分別作動圓異于軸的兩切線,設(shè)兩切線相交于,點的軌跡為曲線.

1)求曲線的軌跡方程;

2)過的直線與曲線相交于不同兩點,若曲線上存在點,使得成立,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三棱錐,中點,,,過的平面截三棱錐的外接球所得截面的面積范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,橢圓的長軸為短軸,且兩個橢圓的離心率相同,設(shè)O為坐標原點,點A、B分別在橢圓、上,若,則直線AB的斜率k為( .

A.1B.-1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果對于函數(shù)定義域內(nèi)任意的兩個自變量的值,當(dāng)時,都有,且存在兩個不相等的自變量值,,使得,就稱為定義域上的不嚴格的增函數(shù)”.下列所給的四個函數(shù)中為不嚴格增函數(shù)的是(

A.;B.;

C.;D..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)若曲線在點處的切線方程為,其中是自然對數(shù)的底數(shù),求的值:

(Ⅱ)若函數(shù)內(nèi)的減函數(shù),求正數(shù)的取值范圍;

(Ⅲ)若方程無實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面,,,.

(1)當(dāng)變化時,點到平面的距離是否為定值?若是,請求出該定值;若不是,請說明理由;

(2)當(dāng)直線與平面所成的角為45°時,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案