【題目】為了解本市居民的生活成本,甲、乙、內(nèi)三名同學(xué)利用假期分別對三個(gè)社區(qū)進(jìn)行了“家庭每月日常消費(fèi)額”的調(diào)查.他們將調(diào)查所得到的數(shù)據(jù)分別繪制成頻率分布直方圖(如圖所示),甲、乙、丙所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為x1 , x2 , x3 , 則它們的大小關(guān)系為( )
A.s1>s2>s3
B.s1>s3>s2
C.s3>s2>s1
D.s3>s1>s2
【答案】B
【解析】解:根據(jù)三個(gè)頻率分步直方圖知, 第一組數(shù)據(jù)的兩端數(shù)字較多,絕大部分?jǐn)?shù)字都處在兩端數(shù)據(jù)偏離平均數(shù)遠(yuǎn),最分散,其方差、標(biāo)準(zhǔn)差最大;
第三組數(shù)據(jù)是單峰的每一個(gè)小長方形的差別比較小,數(shù)字分布均勻,數(shù)據(jù)不如第一組偏離平均數(shù)大,方差比第一組中數(shù)據(jù)中的方差、標(biāo)準(zhǔn)差小,
而第二組數(shù)據(jù)絕大部分?jǐn)?shù)字都在平均數(shù)左右,數(shù)據(jù)最集中,故其方差、標(biāo)準(zhǔn)差最小,
總上可知s1>s3>s2 ,
故選:B.
【考點(diǎn)精析】本題主要考查了極差、方差與標(biāo)準(zhǔn)差的相關(guān)知識點(diǎn),需要掌握標(biāo)準(zhǔn)差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差和方程為0時(shí),樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實(shí)際問題時(shí),多采用標(biāo)準(zhǔn)差才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品計(jì)劃提價(jià),現(xiàn)有四種方案,方案(Ⅰ)先提價(jià)m%,再提價(jià)n%;方案(Ⅱ)先提價(jià)n%,再提價(jià)m%;方案(Ⅲ)分兩次提價(jià),每次提價(jià)( )%;方案(Ⅳ)一次性提價(jià)(m+n)%,已知m>n>0,那么四種提價(jià)方案中,提價(jià)最多的是( )
A.Ⅰ
B.Ⅱ
C.Ⅲ
D.Ⅳ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知點(diǎn)D,E分別在邊AB,BC上,且AB=3AD,BC=2BE.
(Ⅰ)用向量 , 表示 .
(Ⅱ)設(shè)AB=6,AC=4,A=60°,求線段DE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題為真命題的是( )
A.若 x>y>0,則 ln x+ln y>0
B.“φ= ”是“函數(shù) y=sin(2x+φ) 為偶函數(shù)”的充要條件
C.?x0∈(﹣∞,0),使 3x0<4x0成立
D.已知兩個(gè)平面α,β,若兩條異面直線m,n滿足m?α,n?β且 m∥β,n∥α,則α∥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=x ln x﹣ax2+(2a﹣1)x,a∈R.
(Ⅰ)令g(x)=f′(x ),求 g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a≤0時(shí),直線 y=t(﹣1<t<0)與f(x)的圖象有兩個(gè)交點(diǎn)A(x1 , t),B(x2 , t),且x1<x2 , 求證:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中(如圖①),AB∥CD,AB⊥BC,G為AD上一點(diǎn),且AB=AG=1,GD=CD=2,M為GC的中點(diǎn),點(diǎn)P為邊BC上的點(diǎn),且滿足BP=2PC.現(xiàn)沿GC折疊使平面GCD⊥平面ABCG(如圖②).
(1)求證:平面BGD⊥平面GCD:
(2)求直線PM與平面BGD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )+m(m∈R),當(dāng)x∈[0, ]時(shí),f(x)的最小值為﹣1.
(Ⅰ)求m的值;
(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延長AB至D,使BC=BD,且AD=5,求△ACD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù) x∈[1,10],執(zhí)行如圖所示的程序框圖,則輸出的x不大于63的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com