【題目】如圖,在四棱錐S-ABCD中,底面ABCD是菱形,為等邊三角形,G是線段SB上的一點(diǎn),且SD//平面GAC.

1)求證:GSB的中點(diǎn);

2)若FSC的中點(diǎn),連接GA,GC,FA,FG,平面SAB⊥平面ABCD,,求三棱錐F-AGC的體積.

【答案】1)見解析;(2

【解析】

連接于點(diǎn),連接,利用線面平行的性質(zhì)定理可得,//,再由的中點(diǎn)即可得證;

利用邊長的倍數(shù)關(guān)系和棱錐的體積公式進(jìn)行轉(zhuǎn)化, ,利用間接法,結(jié)合題意求出即可.

1)證明:如圖,連接于點(diǎn),則的中點(diǎn),連接,

平面,平面平面,平面,

,而的中點(diǎn),∴的中點(diǎn).

2)解:∵分別為,的中點(diǎn),

.

的中點(diǎn),連接,

為等邊三角形,∴,

又平面平面,平面平面,平面,

平面,

因?yàn)?/span>,所以,因?yàn)?/span>

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABCA1B1C1中,E是棱AB的中點(diǎn),動點(diǎn)F是側(cè)面ACC1A1(包括邊界)上一點(diǎn),若EF//平面BCC1B1,則動點(diǎn)F的軌跡是(

A.線段B.圓弧

C.橢圓的一部分D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的焦點(diǎn)在軸上.

1)若橢圓的焦距為1,求橢圓的方程;

2)設(shè)分別是橢圓的左、右焦點(diǎn),為橢圓上的第一象限內(nèi)的點(diǎn),直線軸與點(diǎn),并且,證明:當(dāng)變化時,點(diǎn)在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)設(shè)x1y1,證明x+yxy;

(Ⅱ)1abc,證明logab+logbc+logcalogba+logcb+logac

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平面多邊形中,AE=ED,AB=BD,且,現(xiàn)沿直線,將折起,得到四棱錐.

(1)求證: ;

(2)若,求PD與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,為其焦點(diǎn),為其準(zhǔn)線,過任作一條直線交拋物線于兩點(diǎn),、分別為、上的射影,的中點(diǎn),給出下列命題:

1;(2;(3;

4的交點(diǎn)的軸上;(5交于原點(diǎn).

其中真命題的序號為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓的右頂點(diǎn)到直線的距離為3.

1)求橢圓的方程;

2)過點(diǎn)的直線與橢圓交于,兩點(diǎn),求的面積的最大值(為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)若點(diǎn)在直線上,且,求直線的斜率;

2)若,求曲線上的點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,已知,,的平分線,且棱錐的三個側(cè)面與底面都成角,求棱錐的側(cè)面積與體積.

查看答案和解析>>

同步練習(xí)冊答案