【題目】已知橢圓的左焦點為,左頂點為,離心率為,點 滿足條件.

(Ⅰ)求實數(shù)的值;

)設(shè)過點的直線與橢圓交于兩點,記的面積分別為,證明: .

【答案】(1) ;(2)見解析.

【解析】試題分析:(Ⅰ)求出, 利用的值;
(Ⅱ)方法一:分類討論,設(shè)出直線方程代入橢圓方程,利用韋達(dá)定理證明,求出面積,即可得出結(jié)論;

方法二:依題意可設(shè)直線的方程為: ,代入橢圓方程,利用韋達(dá)定理證明,求出面積,即可得出結(jié)論;

試題解析:橢圓的標(biāo)準(zhǔn)方程為:

,

,

,解得

(Ⅱ)方法一:

①若直線的斜率不存在,則 ,符合題意

②若直線的斜率存在,因為左焦點,則可設(shè)直線的方程為:

并設(shè).

聯(lián)立方程組,消去得:

,

,

方法二:依題意可設(shè)直線的方程為: ,并設(shè).—5分

聯(lián)立方程組,消去,得

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)的零點至少有兩個,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求實數(shù)的取值范圍;

(2)已知函數(shù),且,若函數(shù)在區(qū)間上恰有3個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求函數(shù)上的最小值;

2)若對任意的恒成立.試求實數(shù)a的取值范圍;

3)若時,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2lnx.

(1)求f(x)的單調(diào)區(qū)間;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ab、c分別是角AB、C的對邊,S是該三角形的面積,且

1)求角A的大;

2)若角A為銳角, ,求邊BC上的中線AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價收費(fèi),超出的部分按議價收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分15分)如圖,在半徑為的半圓形(O為圓心)鐵皮上截取一塊矩形材料ABCD,其中點A、B在直徑上,點C、D在圓周上,將所截得的矩形鐵皮ABCD卷成一個以AD為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),記圓柱形罐子的體積為

(1)按下列要求建立函數(shù)關(guān)系式:

設(shè),將表示為的函數(shù);

設(shè)),將表示為的函數(shù);

(2)請選用(1)問中的一個函數(shù)關(guān)系,求圓柱形罐子的最大體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為 ,過點的直線與橢圓相交于兩點,且,。

1求橢圓的離心率;

2設(shè)點C與點A關(guān)于坐標(biāo)原點對稱,直線上有一點 的外接圓上,求的值

查看答案和解析>>

同步練習(xí)冊答案