【題目】設(shè)函數(shù),,其中.若函數(shù)在區(qū)間上有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是__

【答案】

【解析】

gx)=fx)﹣4mxm=0得fx)=4mx+m,分別作出兩個(gè)函數(shù)的圖象,利用數(shù)形結(jié)合建立不等式關(guān)系進(jìn)行求解即可.

由題可得.作函數(shù)yfx)的圖象,如圖所示

函數(shù)gx)零點(diǎn)的個(gè)數(shù)函數(shù)yfx)的圖象與直線y=4mx+m交點(diǎn)的個(gè)數(shù).

當(dāng)直線y=4mx+m過點(diǎn)(1,1)時(shí),;當(dāng)直線y=4mx+m與曲線(﹣1<x<0)相切時(shí),(m<0),

4mx+m

4mx+m,

即﹣x=(4mx+m)(x+1),

整理得4mx2+(5m+1)x+m=0,

則判別式△=(5m+1)2﹣16m2=0,且﹣10

即9m2+10m+1=0,

可求得m=﹣1或m

當(dāng)m時(shí),﹣10不成立,

故此時(shí)m=﹣1,

根據(jù)圖象可知當(dāng)mm=﹣1時(shí),函數(shù)gx)在區(qū)間(﹣1,1)上有且僅有一個(gè)零點(diǎn).

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知內(nèi)角的角平分線.

(1)用正弦定理證明: ;

2)若,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國的11本.法國的20本.日本的40本.猶太人的64本少得多,是世界上人均讀書最少的國家.”這個(gè)論斷被各種媒體反復(fù)引用.出現(xiàn)這樣的統(tǒng)計(jì)結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國.禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動(dòng),準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天名讀書者進(jìn)行調(diào)查,將他們的年齡分成6段: , , , , 后得到如圖所示的頻率分布直方圖.問:

(1)估計(jì)在40名讀書者中年齡分布在的人數(shù);

(2)求40名讀書者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書者中任取2名,求恰有1名讀書者年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某項(xiàng)競賽分為初賽、復(fù)賽、決賽三個(gè)階段進(jìn)行,每個(gè)階段選手要回答一個(gè)問題.規(guī)定正確回答問題者進(jìn)入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復(fù)賽、決賽的概率分別是,且各階段通過與否相互獨(dú)立.

1)求該選手在復(fù)賽階段被淘汰的概率;

2)設(shè)該選手在競賽中回答問題的個(gè)數(shù)為,求的分布列與均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓上任取一點(diǎn),過點(diǎn)軸的垂線段,為垂足.當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),線段的中點(diǎn)形成軌跡

1)求軌跡的方程;

2)若直線與曲線交于兩點(diǎn),為曲線上一動(dòng)點(diǎn),求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足.設(shè)線段的中點(diǎn)上的投影為,則的最大值是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,過點(diǎn)的直線與橢圓交于軸上方的兩點(diǎn),且.

(Ⅰ)求橢圓的離心率;

(Ⅱ)(。┣笾本的斜率;

(ⅱ)設(shè)點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱,直線上有一點(diǎn)的外接圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】德陽中學(xué)數(shù)學(xué)競賽培訓(xùn)共開設(shè)有初等代數(shù)、初等幾何、初等數(shù)論和微積分初步共四門課程,要求初等代數(shù)、初等幾何都要合格,且初等數(shù)論和微積分初步至少有一門合格,則能取得參加數(shù)學(xué)競賽復(fù)賽的資格,現(xiàn)有甲、乙、丙三位同學(xué)報(bào)名參加數(shù)學(xué)競賽培訓(xùn),每一位同學(xué)對這四門課程考試是否合格相互獨(dú)立,其合格的概率均相同,(見下表),且每一門課程是否合格相互獨(dú)立,


初等代數(shù)

初等幾何

初等數(shù)論

微積分初步

合格的概率





1)求甲同學(xué)取得參加數(shù)學(xué)競賽復(fù)賽的資格的概率;

2)記表示三位同學(xué)中取得參加數(shù)學(xué)競賽復(fù)賽的資格的人數(shù),求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與直線都經(jīng)過點(diǎn).直線平行,且與橢圓交于兩點(diǎn),直線軸分別交于兩點(diǎn).

(1)求橢圓的方程;

(2)證明: 為等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案