【題目】某高校藝術(shù)學(xué)院2019級表演專業(yè)有27人,播音主持專業(yè)9人,影視編導(dǎo)專業(yè)18人.某電視臺(tái)綜藝節(jié)目招募觀眾志愿者,現(xiàn)采用分層抽樣的方法從上述三個(gè)專業(yè)的人員中選取6人作為志愿者.
(1)分別寫出各專業(yè)選出的志愿者人數(shù);
(2)將6名志愿者平均分成三組,且每組的兩名同學(xué)選自不同的專業(yè),通過適當(dāng)?shù)姆绞搅谐鏊锌赡艿慕Y(jié)果,并求表演專業(yè)的志愿者與播音主持專業(yè)的志愿者分在一組的概率.
【答案】(1)表演專業(yè)3人,播音主持專業(yè)1人,影視編導(dǎo)專業(yè)2人; (2)可能的結(jié)果見解析;.
【解析】
(1)先求解分層抽樣抽取的比例,再逐個(gè)計(jì)算即可.
(2) 設(shè)表演專業(yè)的3位志愿者為,,,播音主持專業(yè)的志愿者為;影視編導(dǎo)專業(yè)的志愿者為,.再利用列舉法求解即可.
(1)由題可知選取比例為,故表演專業(yè)人,播音主持專業(yè)人,影視編導(dǎo)專業(yè)人.
(2)設(shè)表演專業(yè)的3位志愿者為,,,播音主持專業(yè)的志愿者為;影視編導(dǎo)專業(yè)的志愿者為,.則符合條件的所有可能結(jié)果有以下6種:
①,,;
②,,;
③,,;
④,,;
⑤,,;
⑥,,.
其中與分在一組的情況恰有2種,設(shè)所求事件為,則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列的極限一節(jié),課本中給出了計(jì)算由拋物線、軸以及直線所圍成的曲邊區(qū)域面積的一種方法:把區(qū)間平均分成份,在每一個(gè)小區(qū)間上作一個(gè)小矩形,使得每個(gè)矩形的左上端點(diǎn)都在拋物線上(如圖),則當(dāng)時(shí),這些小矩形面積之和的極限就是.已知.利用此方法計(jì)算出的由曲線、軸以及直線所圍成的曲邊區(qū)域的面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為正整數(shù),各項(xiàng)均為正整數(shù)的數(shù)列滿足:,記數(shù)列的前項(xiàng)和為.
(1)若,求的值;
(2)若,求的值;
(3)若為奇數(shù),求證:“”的充要條件是“為奇數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為提升中學(xué)生的數(shù)學(xué)素養(yǎng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,舉辦了一次“數(shù)學(xué)文化知識大賽”,分預(yù)賽和復(fù)賽兩個(gè)環(huán)節(jié).已知共有8000名學(xué)生參加了預(yù)賽,現(xiàn)從參加預(yù)賽的全體學(xué)生中隨機(jī)地抽取100人的預(yù)賽成績作為樣本,得到如下頻率分布直方圖.
(1)規(guī)定預(yù)賽成績不低于80分為優(yōu)良,若從上述樣本中預(yù)賽成績不低于60分的學(xué)生中隨機(jī)地抽取2人,求恰有1人預(yù)賽成績優(yōu)良的概率;
(2)由頻率分布直方圖可認(rèn)為該市全體參加預(yù)賽學(xué)生的預(yù)賽成績Z服從正態(tài)分布N(μ,σ2),其中μ可近似為樣本中的100名學(xué)生預(yù)賽成績的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替),且σ2=362.利用該正態(tài)分布,估計(jì)全市參加預(yù)賽的全體學(xué)生中預(yù)賽成績不低于91分的人數(shù);
(3)預(yù)賽成績不低于91分的學(xué)生將參加復(fù)賽,復(fù)賽規(guī)則如下:①每人的復(fù)賽初始分均為100分;②參賽學(xué)生可在開始答題前自行決定答題數(shù)量n,每一題都需要“花”掉(即減去)一定分?jǐn)?shù)來獲取答題資格,規(guī)定答第k題時(shí)“花”掉的分?jǐn)?shù)為0.1k(k∈(1,2n));③每答對一題加1.5分,答錯(cuò)既不加分也不減分;④答完n題后參賽學(xué)生的最終分?jǐn)?shù)即為復(fù)賽成績.已知學(xué)生甲答對每道題的概率均為0.7,且每題答對與否都相互獨(dú)立.若學(xué)生甲期望獲得最佳的復(fù)賽成績,則他的答題數(shù)量n應(yīng)為多少?
(參考數(shù)據(jù):;若Z~N(μ,σ2),則P(μ﹣σ<Z<μ+σ)≈0.6827,P(μ﹣2σ<Z<μ+2σ)≈0.9545,P(μ﹣3σ<Z<μ+3σ)≈0.9973.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).設(shè)直線與的交點(diǎn)為,當(dāng)變化時(shí)的點(diǎn)的軌跡為曲線.
(1)求出曲線的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)射線的極坐標(biāo)方程為且,點(diǎn)是射線與曲線的交點(diǎn),求點(diǎn)的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱,,以為圓心的圓過兩點(diǎn),且與直線相切.若存在定點(diǎn),使得當(dāng)運(yùn)動(dòng)時(shí),為定值,則點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面α∩平面β=l,A,C是α內(nèi)不同的兩點(diǎn),B,D是β內(nèi)不同的兩點(diǎn),且A,B,C,D直線l,M,N分別是線段AB,CD的中點(diǎn).下列判斷正確的是( 。
A.若ABCD,則MNl
B.若M,N重合,則ACl
C.若AB與CD相交,且ACl,則BD可以與l相交
D.若AB與CD是異面直線,則MN不可能與l平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2a=2bcosC+csinB.
(Ⅰ)求tanB;
(Ⅱ)若C,△ABC的面積為6,求BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+lnx(a∈R).
(1)當(dāng)a=時(shí),求f(x)在區(qū)間[1,e]上的最大值和最小值;
(2)如果函數(shù)g(x),f1(x),f2(x),在公共定義域D上,滿足f1(x)<g(x)<f2(x),那么就稱g(x)為f1(x),f2(x)的“活動(dòng)函數(shù)”.已知函數(shù). 。若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1(x),f2(x)的“活動(dòng)函數(shù)”,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com