點M的極坐標(biāo)(5,
3
)化為直角坐標(biāo)為(  )
分析:直接利用極坐標(biāo)和直角坐標(biāo)的互化公式計算.
解答:解:點M的極坐標(biāo)(5,
3
),
由x=5cos
3
=5×(-
1
2
)=-
5
2
,y=5sin
3
=5×(-
3
2
)=-
5
3
2

得(5,
3
)的直角坐標(biāo)為(-
5
2
,
5
3
2
).
故選B.
點評:本題考查了點的極坐標(biāo)和直角坐標(biāo)的互化,是基礎(chǔ)的計算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點M的極坐標(biāo)為(5,
π
3
)
,下列所給四個坐標(biāo)中能表示點M的坐標(biāo)是( 。
A、(5,-
π
3
)
B、(5,
3
)
C、(5,-
3
)
D、(5,-
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,已知點P的直角坐標(biāo)(1,-5),點M的極坐標(biāo)為(4,
π
2
)
,若直線l過點P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
(1)寫出直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三題中任選兩題作答
(1)(2011年江蘇高考)已知矩陣A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校?迹┮灾苯亲鴺(biāo)系的原點O為極點,x軸的正半軸為極軸,已知點P的直角坐標(biāo)為(1,-5),點M的極坐標(biāo)為(4,
π
2
)
,若直線l過點P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
①求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;  ②試判定直線l和圓C的位置關(guān)系.
(3)若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三題中任選兩題作答
(1)(2011年江蘇高考)已知矩陣A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校?迹┮灾苯亲鴺(biāo)系的原點O為極點,x軸的正半軸為極軸,已知點P的直角坐標(biāo)為(1,-5),點M的極坐標(biāo)為(4,
π
2
)
,若直線l過點P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
①求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;  ②試判定直線l和圓C的位置關(guān)系.
(3)若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

同步練習(xí)冊答案