【題目】函數(shù).
(1)若函數(shù)的圖象在處的切線(xiàn)過(guò),求的值;
(2)在恒成立,求的取值范圍.
【答案】(1)1;(2).
【解析】
(1)先對(duì)函數(shù)求導(dǎo),得到,根據(jù)題意,得到,推出,設(shè),,對(duì)其求導(dǎo),研究其單調(diào)性,求出最小值,即可得出結(jié)果;
(2)先由題意,將在恒成立,轉(zhuǎn)化為在恒成立,設(shè),,對(duì)其求導(dǎo),分,,三種情況討論,研究其單調(diào)性,得到其大致范圍,即可得出結(jié)果.
(1)因?yàn)?/span>,所以,
由于在處的切線(xiàn)過(guò),
所以,即,
化簡(jiǎn)得,即,
設(shè),,則,
由得;由得;
從而在單調(diào)遞增,再單調(diào)遞減;因此,
所以有唯一根;
(2)由得,因?yàn)?/span>,所以,
因此,在恒成立,即是在恒成立;
設(shè),,
則,
當(dāng)時(shí),,此時(shí)恒成立,
所以單增,因此,滿(mǎn)足題意;
當(dāng)時(shí),顯然恒成立,此時(shí)單增,
所以,也滿(mǎn)足題意;
當(dāng)時(shí),由得,,
所以方程必有兩不等實(shí)根,不妨設(shè)為,
由根與系數(shù)關(guān)系,,所以方程在有唯一根,
即在有唯一根,所以易得:在單減,單增,
則,與題意矛盾,不成立;
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若A1,A2,…,Am為集合A={1,2,…,n}(n≥2且n∈N*)的子集,且滿(mǎn)足兩個(gè)條件:
①A1∪A2∪…∪Am=A;
②對(duì)任意的{x,y}A,至少存在一個(gè)i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.則稱(chēng)集合組A1,A2,…,Am具有性質(zhì)P.
如圖,作n行m列數(shù)表,定義數(shù)表中的第k行第l列的數(shù)為akl.
a11 | a12 | … | a1m |
a21 | a22 | … | a2m |
… | … | … | … |
an1 | an2 | … | anm |
(1)當(dāng)n=4時(shí),判斷下列兩個(gè)集合組是否具有性質(zhì)P,如果是請(qǐng)畫(huà)出所對(duì)應(yīng)的表格,如果不是請(qǐng)說(shuō)明理由;
集合組1:A1={1,3},A2={2,3},A3={4};
集合組2:A1={2,3,4},A2={2,3},A3={1,4}.
(2)當(dāng)n=7時(shí),若集合組A1,A2,A3具有性質(zhì)P,請(qǐng)先畫(huà)出所對(duì)應(yīng)的7行3列的一個(gè)數(shù)表,再依此表格分別寫(xiě)出集合A1,A2,A3;
(3)當(dāng)n=100時(shí),集合組A1,A2,…,At是具有性質(zhì)P且所含集合個(gè)數(shù)最小的集合組,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的個(gè)數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,相鄰兩項(xiàng)an,an+1是關(guān)于x的方程:x2+3nx+bn0(n∈N*)的兩實(shí)根,且a1=1.
(1)若Sn為數(shù)列{an}的前n項(xiàng)和,求S100 ;
(2)求數(shù)列{an}和{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)的左、右焦點(diǎn)分別為,實(shí)軸長(zhǎng)為4,漸近線(xiàn)方程為,點(diǎn)N在圓上,則的最小值為( )
A. B. 5C. 6D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(|x|﹣b)2+c,函數(shù)g(x)=x+m.
(1)當(dāng)b=2,m=﹣4時(shí),f(x)≥g(x)恒成立,求實(shí)數(shù)c的取值范圍;
(2)當(dāng)c=﹣3,m=﹣2時(shí),方程f(x)=g(x)有四個(gè)不同的解,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與x軸的正半軸交于點(diǎn)A,過(guò)圓O上任意一點(diǎn)P作x軸的垂線(xiàn),垂足為Q,線(xiàn)段PQ的中點(diǎn)的軌跡記為曲線(xiàn),設(shè)過(guò)原點(diǎn)O且異于兩坐標(biāo)軸的直線(xiàn)與曲線(xiàn)交于B,C兩點(diǎn),直線(xiàn)AB與圓O的另一個(gè)交點(diǎn)為M,直線(xiàn)AC與圓O的另一個(gè)交點(diǎn)為N,設(shè)直線(xiàn)AB,AC的斜率分別為.
(1)求的值;
(2)判斷是否為定值?若是,求出此定值;否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)軸為,且過(guò)點(diǎn)
(1)求橢圓的方程;
(2)設(shè)點(diǎn)為原點(diǎn),若點(diǎn)在曲線(xiàn)上,點(diǎn)在直線(xiàn)上,且,試判斷直線(xiàn)與圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿(mǎn)足,則稱(chēng)為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說(shuō)明理由;
(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有次水下考古活動(dòng)中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個(gè)方面:①下潛時(shí),平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時(shí),速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動(dòng)中的總用氧量為升;
(1)將表示為的函數(shù);
(2)若,求總用氧量的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com