【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
【答案】見解析
【解析】(1)(枚舉法)所有的基本事件為(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共10個.
設(shè)“m,n均不小于25”為事件A,則事件A包含的基本事件為(25,30),(25,26),(30,26),共3個,
故由古典概型概率公式得P(A)=.
(2)由數(shù)據(jù)得,另3天的平均數(shù)=12,=27,3 =972,3 2=432,xiyi=977,x=434,
所以==,
=27-×12=-3,
所以y關(guān)于x的線性回歸方程為=x-3.
(3)依題意得,
當(dāng)x=10時,=22,|22-23|<2;
當(dāng)x=8時,=17,|17-16|<2,
所以(2)中所得到的線性回歸方程是可靠的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,x∈[1,+∞).
(1)當(dāng)a=時,判斷并證明f(x)的單調(diào)性;
(2)當(dāng)a=-1時,求函數(shù)f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線C:y2=4x,過點A(1,2)作拋物線C的弦AP,AQ.
(1)若AP⊥AQ,證明:直線PQ過定點,并求出定點的坐標(biāo);
(2)假設(shè)直線PQ過點T(5,-2),請問是否存在以PQ為底邊的等腰三角形APQ?若存在,求出△APQ的個數(shù),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aln x+ (a∈R).
(1)當(dāng)a=1時,求f(x)在x∈[1,+∞)內(nèi)的最小值;
(2)若f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(3)求證ln(n+1)> +++…+ (n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(2)若函數(shù)在上的最小值為3,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), , .
(1)當(dāng)時,求的極值;
(2)令,求函數(shù)的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱中,底面是矩形,且, , ,若為的中點,且.
(Ⅰ)求證: 平面;
(Ⅱ)線段上是否存在一點,使得二面角的大小為?若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市出租車的現(xiàn)行計價標(biāo)準(zhǔn)是:路程在2 km以內(nèi)(含2 km)按起步價8元收取,超過2 km后的路程按1.9 元/km收取,但超過10 km后的路程需加收50%的返空費(即單價為1.9×(1+50%)=2.85(元/km)).
(1)將某乘客搭乘一次出租車的費用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16 km,他準(zhǔn)備先乘一輛出租車行駛8 km后,再換乘另一輛出租車完成余下行程,請問:他這樣做是否比只乘一輛出租車完成全部行程更省錢?
(現(xiàn)實中要計等待時間且最終付費取整數(shù),本題在計算時都不予考慮)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓中心在坐標(biāo)原點,A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.
(1)若=6,求k的值;
(2)求四邊形AEBF面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com