【題目】已知橢圓過點(diǎn)且離心率為.

(1)求橢圓C的方程;

(2)是否存在過點(diǎn)的直線與橢圓C相交于A,B兩點(diǎn),且滿足.若存在,求出直線的方程;若不存在,請說明理由.

【答案】(1);(2)存在這樣的直線,直線方程為:.

【解析】

(1)根據(jù)已知條件利用即可求得橢圓的方程;

(2)根據(jù),利用向量坐標(biāo)化可得,再分類討論,將直線方程與橢圓方程聯(lián)立,利用韋達(dá)定理,即可求得直線的方程.

解:(1)由已知點(diǎn)代入橢圓方程得

可轉(zhuǎn)化為

由以上兩式解得

所以橢圓C的方程為:.

2)存在這樣的直線.

當(dāng)l的斜率不存在時,顯然不滿足,

所以設(shè)所求直線方程代入橢圓方程化簡得:

.②

,

設(shè)所求直線與橢圓相交兩點(diǎn)

由已知條件可得,③

綜合上述①②③式子可解得符合題意,

所以所求直線方程為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數(shù)據(jù): ,計算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線與直線垂直,求實(shí)數(shù)的值;

2)若上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)滿足:對任意的實(shí)數(shù)都成立,當(dāng)且僅當(dāng)時取等號,則稱函數(shù)上的函數(shù),已知函數(shù)具有性質(zhì):,)對任意的實(shí)數(shù))都成立,當(dāng)且僅當(dāng)時取等號.

(1)試判斷函數(shù))是否是上的函數(shù),說明理由;

(2)求證:上的函數(shù),并求的最大值(其中、、三個內(nèi)角);

(3)若定義域?yàn)?/span>,

是奇函數(shù),證明:不是上的函數(shù);

最小正周期為,證明:不是上的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C的對邊分別為a、bc.已知cosC

(1),求△ABC的面積;

(2)設(shè)向量,,且,求sin(BA)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運(yùn)動隊(duì)從四位運(yùn)動員中選拔一人參加某項(xiàng)賽事,在選拔結(jié)果公布前,甲、乙、丙、丁四位教練對這四位運(yùn)動員預(yù)測如下:甲說:“是被選中”; 乙說:“是被選中”;丙說:“,均未被選中”; 丁說:“是被選中”.若這四位教練中只有兩位說的話是對的,則獲得參賽資格的運(yùn)動員是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),f(x)=-mx2-m+ln(1-m)(m<1)

(Ⅰ)當(dāng)m=時,求f(x)的極值;

(Ⅱ)證明:函數(shù)f(x)有且只有一個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)(其中)滿足下列三個條件:圖象過坐標(biāo)原點(diǎn);②對于任意成立;③方程有兩個相等的實(shí)數(shù)根.

(1)求函數(shù)的解析式;

(2)(其中),求函數(shù)的單調(diào)區(qū)間(直接寫出結(jié)果即可);

(3)研究方程在區(qū)間內(nèi)的解的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案