【題目】在甲、乙兩個盒子中分別裝有標號為1,2,3,4,5的五個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個球被取出的可能性相等.
(1)求取出的兩個球上標號為相鄰整數(shù)的概率;
(2)求取出的兩個球上標號之和與標號之積都不小于5的概率.
【答案】(1) (2)
【解析】分析:(1)從甲乙兩個盒子中各取出個球,編號分別為,用表示抽取結(jié)果,列舉出結(jié)果有種,取出的兩個球上標號為相鄰整數(shù)的結(jié)果有種,得到概率;
(2)從甲乙兩個盒子中各取1個球,編號分別為,用表示抽取結(jié)果,列舉出結(jié)果有種,滿足條件的事件是標號之積都不小于的基本事件,得到概率.
詳解:設(shè)從甲乙兩個盒子中各取出1個球,編號分別為,用表示抽取的結(jié)果,結(jié)果有以下25種:,,,,,,,,,,,,,,,,,,,,,,,,.
(1)取出的兩個球上標號為相鄰整數(shù)的結(jié)果有以下8種:,,,,,,,,故所求概率為,即取出的兩個球上標號為相鄰整數(shù)的概率為.
(2)標號之和與標號之積都不小于5的結(jié)果有以下17種:,,,,,,,,,,,,,,,,,
故所求概率為,故取出的兩個球上標號之和與標號之積都不小于5的概率是.
科目:高中數(shù)學 來源: 題型:
【題目】把函數(shù) 的圖象上每個點的橫坐標擴大到原來的4倍,再向左平移 ,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一個單調(diào)遞減區(qū)間為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種水果的單個質(zhì)量在500g以上視為特等品.隨機抽取1000個該水果,結(jié)果有50個特等品.將這50個水果的質(zhì)量數(shù)據(jù)分組,得到下邊的頻率分布表.
(1)估計該水果的質(zhì)量不少于560g的概率;
(2)若在某批水果的檢測中,發(fā)現(xiàn)有15個特等品,據(jù)此估計該批水果中沒有達到特等品的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加某次知識競賽的同學中,選取60名同學將其成績(百分制,均為整數(shù))分成, , , , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
(1)求分數(shù)內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)從頻率分布直方圖中,估計本次考試成績的中位數(shù);
(3)若從第1組和第6組兩組學生中,隨機抽取2人,求所抽取2人成績之差的絕對值大于10的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ax,(a∈R),其圖象與x軸交于A(x1 , 0),B(x2 , 0)兩點,且x1<x2
(1)求a的取值范圍;
(2)證明: ;(f′(x)為f(x)的導函數(shù))
(3)設(shè)點C在函數(shù)f(x)的圖象上,且△ABC為等邊三角形,記 ,求(t﹣1)(a+ )的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本0.5萬元,此外每生產(chǎn)100件這樣的產(chǎn)品,還需增加投入0.25萬元,經(jīng)市場調(diào)查知這種產(chǎn)品年需求量為500件,產(chǎn)品銷售數(shù)量為 件時,銷售所得的收入為 萬元.
(1)該公司這種產(chǎn)品的年生產(chǎn)量為 件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤關(guān)于當年產(chǎn)量 的函數(shù)為 ,求 ;
(2)當該公司的年產(chǎn)量為多少件時,當年所獲得利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)的一條對稱軸是
②函數(shù)的圖像關(guān)于點對稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若,則其中
其中正確的有____________.(填寫正確命題前面的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個人發(fā)展.某校的一個社會實踐調(diào)查小組,在對該校學生進行“是否有明顯拖延癥”的調(diào)查中,隨機發(fā)放了110份問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下 列聯(lián)表:
(1)按女生是否有明顯拖延癥進行分層,已經(jīng)從40份女生問卷中抽取了8份問卷,現(xiàn)從這8份問卷中再隨機抽取3份,并記其中無明顯拖延癥的問卷的份數(shù)為 ,試求隨機變量 的分布列和數(shù)學期望;
(2)若在犯錯誤的概率不超過 的前提下認為無明顯拖延癥與性別有關(guān),那么根據(jù)臨界值表,最精確的 的值應(yīng)為多少?請說明理由.附:獨立性檢驗統(tǒng)計量 ,其中 .
獨立性檢驗臨界值表:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com